Skip to main content

Advertisement

Log in

Regulating the Electronic Structure of Fe3+-Doped BiOClxI1–x Solid Solution by an Amidoxime-Functionalized Fibrous Support for Efficient Photocatalysis

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

BiOX (X = Cl, I, Br) has attracted intensive interest as a photocatalyst for environmental remediation, but its limited photocatalytic activity versus visible light irradiation restricts its practical application. Herein, a Fe3+-doped BiOClxI1–x solid solution (Fe-BiOClxI1–x) was synthesized in situ on an amidoxime-functionalized fibrous support via a one-pot solvothermal approach. Comprehensive characterization and DFT calculations indicate that the robust chelated interaction between amidoxime groups and Fe3+ greatly boosts the crystal growth of nanosized Fe-BiOClxI1–x on the fibrous surface, simultaneously tunes its electronic structure for improved light harvesting and oxygen vacancy creation, and enables the fibrous support to act as an electron sink for efficient charge separation. These synergistic qualities result in high photocatalytic activity for the degradation of organic contaminants, which outperforms that obtained for unsupported Fe-BiOClxI1–x and other fibrous samples by several times. Our findings highlight the importance of functionalized support design for the development of efficient BiOX photocatalysts under visible light irradiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 2017;117:11302.

    Article  CAS  Google Scholar 

  2. Meng XG, Liu LQ, Ouyang SX, Xu H, Wang DF, Zhao NQ, Ye JH. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater 2016;28:6781.

    Article  CAS  Google Scholar 

  3. Zhou DW, Luo HX, Zhang FZ, Wu J, Yang JP, Wang HP. Efficient photocatalytic degradation of the persistent PET fiber-based microplastics over Pt nanoparticles decorated N-doped TiO2 nanoflowers. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-022-00149-4 .

    Article  Google Scholar 

  4. Hoffmann MR, Marin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev 1995;95:69.

    Article  CAS  Google Scholar 

  5. Xiong SW, Yu Y, Wang P, Liu M, Chen SH, Yin XZ, Wang LX, Wang H. Growth of AgBr/Ag3PO4 heterojunction on chitosan fibers for degrading organic pollutants. Adv Fiber Mater 2020;2:246.

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37.

    Article  CAS  Google Scholar 

  7. Xu CP, Anusuyadevi PR, Aymonier C, Luque R, Marre S. Nanostructured materials for photocatalysis. Chem Soc Rev 2019;48:3868.

    Article  CAS  Google Scholar 

  8. Meng AY, Zhang LY, Cheng B, Yu JG. Dual cocatalysts in TiO2 photocatalysis. Adv Mater 2019;31:1807660.

    Article  Google Scholar 

  9. Meng XY, Xu WL, Yang JH, Zhao JW, Zou XX, Sun YM, Dai YQ. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purification. Adv Fiber Mater 2020;2:93.

    Article  CAS  Google Scholar 

  10. Yang Y, Zhang C, Lai C, Zeng GM, Huang DL, Cheng M, Wang JJ, Chen F, Zhou CY, Xiong WP. BiOX (X=Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Colloid Interface Sci 2018;254:76.

    Article  CAS  Google Scholar 

  11. Zhao YX, Zhang S, Shi R, Waterhouse GIN, Tang JW, Zhang TR. Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances. Mater Today 2020;34:78.

    Article  CAS  Google Scholar 

  12. Yao L, Yang H, Chen ZS, Qiu MQ, Hu BW, Wang XX. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2020;273:128576.

    Article  Google Scholar 

  13. Qamar M, Yamani ZH. Bismuth oxychloride-mediated and laser-induced efficient reduction of Cr(VI) in aqueous suspensions. Appl Catal A: Gen 2012;439–440:187.

    Article  Google Scholar 

  14. Huang HW, Xiao K, Zhang TR, Dong F, Zhang YH. Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl Catal B: Environ 2017;203:879.

    Article  CAS  Google Scholar 

  15. Guo Y, Shi WX, Zhu YF, Xu YP, Cui FY. Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Appl Catal B: Environ 2019;262:118262.

    Article  Google Scholar 

  16. Foo JJ, Ng S-F, Ong W-J. Dimensional heterojunction design: the rising star of 2D bismuth based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res 2022. https://doi.org/10.1007/s12274-021-4045-0 .

    Article  Google Scholar 

  17. Yu QQ, Chen JY, Li YX, Wen MC, Liu HL, Li GY, An TC. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chin J Catal 2020;41:1603.

    Article  CAS  Google Scholar 

  18. Wei Z, Li WL, Hu JS, Ma XG, Zhu YF. Interfacial internal electric field and oxygen vacancies synergistically enhance photocatalytic performance of bismuth oxychloride. J Hazard Mater 2021;402:123470.

    Article  CAS  Google Scholar 

  19. Shahid MZ, Mehmood R, Athar M, Hussain J, Wei Y, Khaliq A. BiOCl nanoplates doped with Fe3+ ions for the visible-light degradation of aqueous pollutants. ACS Appl Nano Mater 2020;4:746.

    Article  Google Scholar 

  20. Mi Y, Wen LY, Wang ZJ, Cao DW, Xu R, Fang YG, Zhou YL, Lei Y. Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst. Nano Energy 2016;30:109.

    Article  CAS  Google Scholar 

  21. Cao JY, Li JJ, Chu W, Cen WL. Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: optimization, degradation pathway, and mechanism. Chem Eng J 2020;400:125813.

    Article  CAS  Google Scholar 

  22. Kim WJ, Pradhan D, Min BK, Sohn Y. Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1–x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl Catal B: Environ 2014;147:711.

    Article  CAS  Google Scholar 

  23. Zhong X, Zhang KX, Wu D, Ye XY, Huang W, Zhou BX. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem Eng J 2020;383:123148.

    Article  CAS  Google Scholar 

  24. Tian F, Li GF, Zhao HP, Chen FX, Li M, Liu YL, Chen R. Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation. J Catal 2019;370:265.

    Article  CAS  Google Scholar 

  25. Gao MC, Zhang DF, Pu XP, Li H, Li WZ, Shao X, Lv DD, Zhang BB, Dou JM. Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities. Sep Purif Technol 2016;162:114.

    Article  CAS  Google Scholar 

  26. Zhang GQ, Cai L, Zhang YF, Wei Y. Bi5+, Bi(3–x)+, and oxygen vacancy induced BiOClxI1–x solid solution toward promoting visible-light driven photocatalytic activity. Chem Eur J 2018;24:7434.

    Article  CAS  Google Scholar 

  27. Wang Q, Liu ZQ, Liu DM, Liu GS, Yang M, Cui FY, Wang W. Ultrathin two-dimensional BiOBrxI1–x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl Catal B: Environ 2018;236:222.

    Article  CAS  Google Scholar 

  28. Deng F, Luo YB, Li H, Xia BH, Luo XB, Luo SL, Dionysiou DD. Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOClxI1–x, BiOBrxI1–x and BiOClxBr1–x solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction. J Hazard Mater 2020;383:121127.

    Article  CAS  Google Scholar 

  29. Zhao QH, Liu XY, Sun ML, Du CF, Liu ZL. Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl: a novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol. RSC Adv 2015;5:36948.

    Article  CAS  Google Scholar 

  30. Ishtchenko VV, Huddersman KD, Vitkovskaya RF. Production of a modified PAN fibrous catalyst and its optimisation towards the decomposition of hydrogen peroxide. Appl Catal A: Gen 2003;242:123.

    Article  CAS  Google Scholar 

  31. Han ZB, Dong YC, Dong SM. Copper-iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation. J Hazard Mater 2011;189:241.

    Article  CAS  Google Scholar 

  32. Ji XJ, Han ZB, Li JF, Deng Y, Han X, Zhao J, Zhao XM, Chen CC. MoSx co-catalytic activation of H2O2 by heterogeneous hemin catalyst under visible light irradiation. J Colloid Inter Sci 2019;557:301.

    Article  CAS  Google Scholar 

  33. Han ZB, Li JF, Han X, Ji XJ, Zhao XM. A comparative study of iron-based PAN fibrous catalysts for peroxymonosulfate activation in decomposing organic contaminants. Chem Eng J 2019;358:176.

    Article  CAS  Google Scholar 

  34. Xu FY, Tan HY, Fan JJ, Cheng B, Yu JG, Xu JS. Electrospun TiO2-based photocatalysts. Solar RRL 2021;5:2000571.

    Article  CAS  Google Scholar 

  35. Dong YC, Han ZB, Liu CY, Du F. Preparation and photocatalytic performance of Fe(III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation. Sci Total Environ 2010;408:2245.

    Article  CAS  Google Scholar 

  36. Xia JX, Xu L, Zhang J, Yin S, Li HM, Xu H, Di J. Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. CrystEngComm 2013;15:10132.

    Article  CAS  Google Scholar 

  37. Huang CJ, Hu JL, Cong S, Zhao ZG, Qiu XQ. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification. Appl Catal B: Environ 2015;174–175:105.

    Article  Google Scholar 

  38. Han ZB, Han X, Zhao XM, Yu JT, Xu H. Iron phthoalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes. J Hazard Mater 2016;320:27.

    Article  CAS  Google Scholar 

  39. Wu T, Liu C, Kong B, Sun J, Gong YJ, Liu K, Xie J, Pei A, Cui Y. Amidoxime-functionalized microporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water. ACS Cent Sci 2019;5:719.

    Article  CAS  Google Scholar 

  40. George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Mädler L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 2011;133:11270.

    Article  CAS  Google Scholar 

  41. Zheng Y, Zhou TF, Zhao XX, Pang WK, Gao H, Li S, Zhou Z, Liu HK, Guo ZP. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater 2017;29:1700396.

    Article  Google Scholar 

  42. Zhuang GX, Chen YW, Zhuang ZY, Yu Y, Yu JG. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Sci China Mater 2020;63:2089.

    Article  CAS  Google Scholar 

  43. Wu SQ, Wang JB, Li QC, Huang ZA, Rao ZQ, Zhou Y. Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance photocatalytic CO2 reduction. Trans Tianjin Univ 2021;27:155.

    Article  CAS  Google Scholar 

  44. Sun SC, Gao RJ, Liu XL, Pan L, Shi CX, Jiang Z, Zhang XW, Zou JJ. Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Sci Bull 2022;67:389.

    Article  CAS  Google Scholar 

  45. Wu QY, Cao JJ, Wang X, Liu Y, Zhao YJ, Wang H, Liu Y, Huang H, Liao F, Shao MW, Kang ZH. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat Commun 2021;12:483.

    Article  CAS  Google Scholar 

  46. Gopakumar A, Ren P, Chen JH, Rodrigues BVM, Ching HYV, Jaworski A, Doorslaer SV, Rokicinska A, Kustrowski P, Barcaro G, Monti S, Slabon A, Das S. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J Am Chem Soc 2022;144:2603.

    Article  CAS  Google Scholar 

  47. Xiao YJ, Qi Y, Wang XL, Wang XY, Zhang FX, Li C. Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation. Adv Mater 2018;30:1803401.

    Article  Google Scholar 

  48. Hao XQ, Wang YC, Zhou J, Cui ZW, Wang Y, Zou ZG. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl Cataly B: Environ 2018;221:302.

    Article  CAS  Google Scholar 

  49. Zhang XC, Wei JB, Li R, Zhang CM, Zhang H, Han PD, Fan CM. DFT + U predictions: structural stability, electronic and optical properties, oxidation activity of BiOCl photocatalysts with 3d transition metals doping. J Mater Sci 2017;53:4494.

    Article  Google Scholar 

  50. Zhang J, Wageh S, Al-Ghamdi A, Yu J. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl Catal B: Environ 2016;192:101.

    Article  CAS  Google Scholar 

  51. Shen GQ, Pan L, Zhang RR, Sun SC, Hou F, Zhang XW, Zou JJ. Low-spin-state hematite with superior adsorption of anionic contaminations for water purification. Adv Mater 2020;32:e1905988.

    Article  Google Scholar 

  52. Jiang J, Sun FF, Zhou S, Hu W, Zhang H, Dong JC, Jiang Z, Zhao JJ, Li JF, Yan WS, Wang M. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat Commun 2018;9:2885.

    Article  Google Scholar 

  53. Zhao SL, Wang Y, Dong JC, He CT, Yin HJ, An PF, Zhao K, Zhang XF, Gao C, Zhang LJ, Lv JW, Wang JX, Zhang JQ, Khattak AM, Khan NA, Wei ZX, Zhang J, Liu SQ, Zhao HJ, Tang ZY. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 2016;1:16184.

    Article  CAS  Google Scholar 

  54. Zhang G, Kim G, Choi W. Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci 2014;7:954.

    Article  CAS  Google Scholar 

  55. Weng YX, Wang YQ, Asbury JB, Ghosh HN, Lian TQ. Back electron transfer from TiO2 nanoparticles to FeIII (CN)6 3−: origin of non-single-exponential and particle size independent dynamics. J Phys Chem B 2000;104:93.

    Article  CAS  Google Scholar 

  56. Smith MK, Mirica KA. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture and filtration of gases. J Am Chem Soc 2017;139:16759.

    Article  CAS  Google Scholar 

  57. Shen GQ, Zhang RR, Pan L, Hou F, Zhao YJ, Shen ZY, Mi WB, Shi CX, Wang QF, Zhang XW, Zou JJ. Regulating the spin state of FeIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 2020;59:2313.

    Article  CAS  Google Scholar 

  58. Han ZB, Guo J, Li W. Fe(bpy)32+ supported on amidoximated PAN fiber as effective catalyst for the photodegradation of organic dye under visible light irradiation. Chem Eng J 2013;228:36.

    Article  CAS  Google Scholar 

  59. Xu ZF, Xu K, Feng HF, Du Y, Hao WC. s-p orbital hybridization: a strategy for developing efficient photocatalysts with high carrier mobility. Sci Bull 2018;63:465.

    Article  CAS  Google Scholar 

  60. Chen RT, Fan FT, Li C. Unraveling charge separation mechanisms in photocatalyst particles by spatially resolved surface photovoltage. Angew Chem Int Ed 2022. https://doi.org/10.1002/anie.202117567 .

    Article  Google Scholar 

  61. Teoh WY, Scott JA, Amal R. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 2012;3:629.

    Article  CAS  Google Scholar 

  62. Li H, Li J, Ai ZH, Jia FL, Zhang LZ. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity and perspective. Angew Chem Int Ed 2018;57:122.

    Article  CAS  Google Scholar 

  63. Li H, Chen S, Shang H, Wang XB, Yang ZP, Ai ZH, Zhang LZ. Surface hydrogen bond network spatially confined BiOCl oxygen vacancy for photocatalysis. Sci Bull 1916;2020:65.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52003192; 21806121), Special Fund Project for Technology Innovation of Tianjin City (20YDTPJC00920) and Natural Science Foundation of Tianjin City (15JCQNJC06300).

Funding

National Natural Science Foundation of China, 52003192, Zhenbang Han, 21806121, Zhenbang Han, Natural Science Foundation of Tianjin City, 20YDTPJC00920, Zhenbang Han, 15JCQNJC06300, Zhenbang Han.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenbang Han or Xiaoming Zhao.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2749 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Lv, M., Shi, X. et al. Regulating the Electronic Structure of Fe3+-Doped BiOClxI1–x Solid Solution by an Amidoxime-Functionalized Fibrous Support for Efficient Photocatalysis. Adv. Fiber Mater. 5, 266–281 (2023). https://doi.org/10.1007/s42765-022-00220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00220-0

Keywords

Navigation