Skip to main content

Advertisement

Log in

Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In recent years, electrospun nanofibers have attracted great attention for their facile adjustable structure, morphology feature and chemical composition. Especially, significant interest has been devoted to the development of electrospun nanofibers with multiscale pores from micropores and mesopores to macropores, owing to their large specific surface area, hierarchical pore structures, abundant active sites and many other unique properties and applications. This review presents an overview on the design strategies, preparation methods, physical properties and applications of electrospun hierarchical porous nanofibers. At first, electrospinning fabrication of nanofibers with different types of pores including micropores, mesopores, macropores and hierarchical pores are introduced. Then the structures, properties of electrospun porous nanofibers and their applications in several important areas, such as catalysis, energy storage, adsorption and separation, heat insulation and flame retardant, sound absorption and wave absorption, sensor and biomedical are summarized. At last, challenges and potential opportunities of electrospun porous nanofibers in the future are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun ZC, Zussman E, Yarin AL, Wendorff JH, Greiner A. Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 2003;15:1929.

    Article  CAS  Google Scholar 

  2. Dzenis Y. Spinning continuous fibers for nanotechnology. Sci 2004;304:1917.

    Article  CAS  Google Scholar 

  3. Jian SJ, Zhu J, Jiang SH, Chen SL, Fang H, Song YH, Duan GG, Zhang YF, Hou HQ. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 2018;8:4794.

    Article  CAS  Google Scholar 

  4. Dai HQ, Gong J, Kim H, Lee D. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002;13:674.

    Article  CAS  Google Scholar 

  5. Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 2003;3:1167.

    Article  CAS  Google Scholar 

  6. Wang HK, Yang XM, Wu QZ, Zhang QB, Chen HX, Jing HM, Wang JK, Mi SB, Rogach AL, Niu C. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage. ACS Nano 2018;12:3406.

    Article  CAS  Google Scholar 

  7. Yue GC, Li S, Li DM, Liu J, Wang YQ, Zhao YC, Wang N, Cui ZM, Zhao Y. Coral-like Au/TiO2 hollow nanofibers with through-holes as a high-efficient catalyst through mass transfer enhancement. Langmuir 2019;35:4843.

    Article  CAS  Google Scholar 

  8. Liu K, Liu C, Hsu PC, Xu JW, Kong B, Wu T, Zhang RF, Zhou GM, Huang W, Sun J, Cui Y. Core–shell nanofibrous materials with high particulate matter removal efficiencies and thermally triggered flame retardant properties. ACS Cent Sci 2018;4:894.

    Article  CAS  Google Scholar 

  9. Li D, Xia YN. Direct Fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004;4:933.

    Article  CAS  Google Scholar 

  10. Kim BG, Kang DW, Park G, Park SH, Lee SM, Choi JW. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chem Eng J 2021;422:130017.

    Article  CAS  Google Scholar 

  11. Zhang JT, Li Z, Lou XW. A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew Chem Int Ed 2017;56:14107.

    Article  CAS  Google Scholar 

  12. Zhao Y, Cao XY, Lei J. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 2007;129:764.

    Article  CAS  Google Scholar 

  13. Chen HY, Di JC, Wang N, Dong H, Wu J, Zhao Y, Yu JH, Jiang L. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small 2011;7:1779.

    Article  CAS  Google Scholar 

  14. Gao SW, Wang N, Li S, Li DM, Cui ZM, Yue GC, Liu J, Zhao XX, Jiang L, Zhao Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed 2020;59:2465.

    Article  CAS  Google Scholar 

  15. Yu DG, Yang C, Jin M, Williams GR, Zou H, Wang X, Bligh SW. Medicated janus fibers fabricated using a teflon-coated side-by-side spinneret. Colloids Surf B 2016;138:110.

    Article  CAS  Google Scholar 

  16. Cai M, He HW, Zhang X, Yan X, Li JX, Chen FX, Yuan D, Ning X. Efficient synthesis of PVDF/PI side-by-side bicomponent nanofiber membrane with enhanced mechanical strength and good thermal stability. Nanomaterials 2019;9:39.

    Article  CAS  Google Scholar 

  17. Jin Y, Yang DY, Kang DY, Jiang XY. Fabrication of necklace-like structures via electrospinning. Langmuir 2010;26:1186.

    Article  CAS  Google Scholar 

  18. Zhang YY, Chen YE, Hou LL, Guo FY, Liu JC, Qiu SS, Xu Y, Wang N, Zhao Y. Pine-branch-like TiO2 nanofibrous membrane for high efficiency strong corrosive emulsion separation. J Mater Chem A 2017;5:16134.

    Article  CAS  Google Scholar 

  19. Xue JJ, Xie JW, Liu WY, Xia YN. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50:1976.

    Article  CAS  Google Scholar 

  20. de Oliveira MC, Elisângela GD, Pires IC, Candido IC, Rakov N, de Oliveira HP, Xing Y, Maciel GS. Carbon dots-doped electrospun fibers for simultaneous metal ion detection and adsorption of dyes. Adv Fiber Mater 2020; 2(6):302–313. https://doi.org/10.1007/s42765-020-00055-7

  21. Zhu Z, Hao J, Zhu H, Sun S, Duan F, Lu S, Du M. In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting. 2021; Adv Fiber Mater 3(2):117–127. https://doi.org/10.1007/s42765-020-00063-7

  22. Chen X, Bi QS, Sajjad M, Wang X, Ren Y, Zhou XW, Xu W, Liu Z. One-dimensional porous silicon nanowires with large surface area for fast charge–discharge lithium-ion batteries. Nanomaterials 2018;8:12.

    Google Scholar 

  23. Xiong SW, Yu Y, Wang P, Liu M, Chen SH, Yin XZ, Wang LX, Wang H. Growth of AgBr/Ag3PO4 heterojunction on chitosan fibers for degrading organic pollutants. Adv Fiber Mater (2020); 2(5) 246–255. https://doi.org/10.1007/s42765-020-00042-y.

  24. Chen J, Pakdel E, Xie, W, Sun, L, Xu M, Liu Q, Wang D. High-performance natural melanin/Poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv Fiber Mater (2020); 2(2) 64–73. https://doi.org/10.1007/s42765-020-00036-w.

  25. Yoon SB, Kim JY, Park SK, Kim JH, Kim MS, Yu JS. In situ recrystallization of silica template for synthesis of novel microporous ZSM-5/hollow mesoporous carbon composites. Ind Eng Chem Res 2011;50:7998.

    Article  CAS  Google Scholar 

  26. Fang B, Chaudhari NK, Kim MS, Kim JH, Yu JS. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J Am Chem Soc 2009;131:15330.

    Article  CAS  Google Scholar 

  27. Yu JS, Kang S, Yoon SB, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J Am Chem Soc 2002;124:9382.

    Article  CAS  Google Scholar 

  28. Ji QM, Yoon SB, Hill JP, Vinu A, Yu JS, Ariga K. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc 2009;131:4220.

    Article  CAS  Google Scholar 

  29. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 2017;46:481.

    Article  CAS  Google Scholar 

  30. Ma C, Wu LQ, Dirican M, Cheng H, Li JJ, Song Y, Shi JL, Zhang XW. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors. J Colloid Interface Sci 2021;586:412.

    Article  CAS  Google Scholar 

  31. Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 2016;45:3479.

    Article  CAS  Google Scholar 

  32. Zhao R, Shi XY, Ma TT, Rong HZ, Wang ZY, Cui FC, Zhu GS, Wang C. Constructing mesoporous adsorption channels and MOF-polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants. ACS Appl Mater Interfaces 2021;13:755.

    Article  CAS  Google Scholar 

  33. Rezabeigi E, Wood-Adams PM, Demarquette NR. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules 2018;51:4094.

    Article  CAS  Google Scholar 

  34. He YH, Guo H, Hwang S, Yang XX, He ZZ, Braaten J, Karakalos S, Shan WT, Wang MY, Zhou H, Feng ZX, More KL, Wang GF, Su D, Cullen DA, Fei L, Litster S, Wu G. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv Mater 2020;32:2003577.

    Article  CAS  Google Scholar 

  35. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces 2012;4:3207.

    Article  CAS  Google Scholar 

  36. Hou LL, Wang L, Wang N, Guo FY, Liu J, Chen YE, Liu JC, Zhao Y, Jiang L. Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. NPG Asia Mater 2016;8:e334.

    Article  CAS  Google Scholar 

  37. Huang T, Zhu Y, Zhu J, Yu H, Zhang QH, Zhu MF. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater 2020;2:338.

    Article  CAS  Google Scholar 

  38. Wang X, Liu XH, Schubert DW. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nanomicro Lett 2021;13:64.

    Google Scholar 

  39. Yang XP, Li LF, Yang DZ, Nie J, Ma GP. Electrospun core–shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv Fiber Mater 2020;2:105.

    Article  CAS  Google Scholar 

  40. Wu JL, Xu F, Li SM, Ma PW, Zhang XC, Liu QH, Fu RW, Wu DC. Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 2019;31:1802922.

    Article  CAS  Google Scholar 

  41. Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev 2019;60:595.

    Article  CAS  Google Scholar 

  42. Huang C, Thomas NL. Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J 2018;99:464.

    Article  CAS  Google Scholar 

  43. Xie YD, Kocaefe D, Chen CY, Kocaefe Y. Review of research on template methods in preparation of nanomaterials. J Nanomater 2016. https://doi.org/10.1155/2016/2302595 .

    Article  Google Scholar 

  44. Peng C, Zhang JL, Xiong ZG, Zhao BH, Liu PC. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor Mat 2015;215:133.

    Article  CAS  Google Scholar 

  45. Liu J, Jiang GY, Liu Y, Di JC, Wang YJ, Zhao Z, Sun QY, Xu CM, Gao JS, Duan AJ, Liu J, Wei YC, Zhao Y, Jiang L. Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci Rep 2014;4:7276.

    Article  CAS  Google Scholar 

  46. Cheng YL, Li TH, Fang CQ, Zhang MR, Liu XL, Yu RE, Hu JB. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers. Appl Surf Sci 2013;282:862.

    Article  CAS  Google Scholar 

  47. Li JS, Qi JW, Liu C, Zhou L, Song H, Yu CZ, Shen JY, Sun XY, Wang LJ. Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. J Mater Chem A 2014;2:4144.

    Article  CAS  Google Scholar 

  48. Wei QL, Xiong FY, Tan SS, Huang L, Lan EH, Dunn B, Mai LQ. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 2017;29:1602300.

    Article  CAS  Google Scholar 

  49. Niu CJ, Meng JS, Wang XP, Han CH, Yan MY, Zhao KN, Xu XM, Ren WH, Zhao YL, Xu L, Zhang QJ, Zhao DY, Mai LQ. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 2015;6:1.

    Google Scholar 

  50. Li M, Liu Y, Han L, Xiao J, Zeng X, Zhang C, Xu M, Dong P, Zhang Y. A novel strategy for realizing high nitrogen doping in Fe3C-embedded nitrogen and phosphorus-co-doped porous carbon nanowires: efficient oxygen reduction reaction catalysis in acidic electrolytes. J Mater Chem A 2019;7:17923.

    Article  CAS  Google Scholar 

  51. Zhang BA, Kang FY, Tarascon JM, Kim JK. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 2016;76:319.

    Article  CAS  Google Scholar 

  52. Seok JY, Song SA, Yang IY, Woo K, Park SY, Park JH, Kim S, Kim SS, Yang MY. Hierarchically porous carbon nanofibers with controllable porosity derived from iodinated polyvinyl alcohol for supercapacitors. Adv Mater Interfaces 2020;7:2000513.

    Article  CAS  Google Scholar 

  53. Anis SF, Hashaikeh R. Electrospun zeolite-Y fibers: fabrication and morphology analysis. Micropor Mesopor Mat 2016;233:78.

    Article  CAS  Google Scholar 

  54. Hölderich W, Hesse M, Näumann F. Zeolites: catalysts for organic syntheses. Angew Chem Int Ed 1988;27:226.

    Article  Google Scholar 

  55. Di JC, Chen HY, Wang XF, Zhao Y, Jiang L, Yu JH, Xu RR. Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem Mater 2008;20:3543.

    Article  CAS  Google Scholar 

  56. Davis ME. Ordered porous materials for emerging applications. Nature 2010;33:245.

    Google Scholar 

  57. Qiu TJ, Gao S, Liang ZB, Wang DG, Tabassum H, Zhong RQ, Zou RQ. Pristine hollow metal-organic frameworks: design, synthesis and application. Angew Chem Int Ed 2020;60:17314.

    Article  CAS  Google Scholar 

  58. Zhang CL, Lu BR, Cao FH, Wu ZY, Zhang W, Cong HP, Yu SH. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 2019;55:226.

    Article  CAS  Google Scholar 

  59. Tian LD, Ji DX, Zhang S, He XW, Ramakrishna S, Zhang QY. A humidity-induced nontemplating route toward hierarchical porous carbon fiber hybrid for efficient bifunctional oxygen catalysis. Small 2020;16:e2001743.

    Article  CAS  Google Scholar 

  60. Lv Y, Xu ZL, Asai H, Shimada N, Nakane K. Thoroughly mesoporous TiO2 nanotubes prepared by a foaming agent-assisted electrospun template for photocatalytic applications. RSC Adv 2016;6:21043.

    Article  CAS  Google Scholar 

  61. Wang Y, Ding WD, Jiao XL, Chen DR. Electrospun flexible self-standing silica/mesoporous alumina core–shell fibrous membranes as adsorbents toward Congo red. RSC Adv 2014;4:30790.

    Article  CAS  Google Scholar 

  62. Gong X, Zhang S, Luo W, Guo N, Wang L, Jia D, Zhao Z, Feng S, Jia L. Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl Mater Interfaces 2020;12:49586.

    Article  CAS  Google Scholar 

  63. Liu Y, Luo J, Helleu C, Behr M, Ba H, Romero T, Hébraud A, Schlatter G, Ersen O, Su DS, Pham-Huu C. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/cvd processes as a high effective surface area support platform. J Mater Chem A 2017;5:2151.

    Article  CAS  Google Scholar 

  64. Bognitzki M, Czado W, Frese T, Schaper A, Wendorff JH. Nanostructured fibers via electrospinning. Adv Mater 2001;13:70.

    Article  CAS  Google Scholar 

  65. Lin JY, Ding B, Yang JM, Yu JY, Sun G. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 2012;4:176.

    Article  CAS  Google Scholar 

  66. Wu S, Wu J, Yue JH, To MKT, Pan HB, Lu WW, Zhao XL. Poly(d, l-lactic acid) electrospun fibers with tunable surface nanotopography for modulating drug release profiles. Mater Lett 2015;161:716.

    Article  CAS  Google Scholar 

  67. Chen HY, Wang N, Di JC, Zhao Y, Song YL, Jiang L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 2010;26:11291.

    Article  CAS  Google Scholar 

  68. Li Z, Zhang JW, Yu LG, Zhang JW. Electrospun porous nanofibers for electrochemical energy storage. J Mater Sci 2017;52:6173.

    Article  CAS  Google Scholar 

  69. Liu HH, Li YJ, Yuan MW, Sun GB, Liao QL, Zhang Y. Solid and macroporous Fe3C/N–C nanofibers with enhanced electromagnetic wave absorbability. Sci Rep 2018;8:16832.

    Article  CAS  Google Scholar 

  70. Lin JY, Ding B, Yu JY, Hsieh Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2010;2:521.

    Article  CAS  Google Scholar 

  71. Sun QM, Wang N, Xi DY, Yang M, Yu JH. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 2014;50:6502.

    Article  CAS  Google Scholar 

  72. Yu YH, Liu PD, Dou ML, Niu J, Zhang ZP, Wang F. Promotion of hydrogen evolution catalysis by ordered hierarchically porous electrodes. Catal Sci Technol 2021;11:2997.

    Article  CAS  Google Scholar 

  73. Wei J, Zhou DD, Sun ZK, Deng YH, Xia YY. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 2013;23:2322.

    Article  CAS  Google Scholar 

  74. Zheng XH, Zhang GQ, Yao Z, Zheng Y, Shen LJ, Liu FJ, Cao YN, Liang SJ, Xiao YH, Jiang LL. Engineering of crystal phase over porous MnO2 with 3D morphology for highly efficient elimination of H2S. J Hazard Mater 2021;411:125180.

    Article  CAS  Google Scholar 

  75. Shi L, Chu ZY, Liu Y, Jin WQ, Xu NP. In situ fabrication of three-dimensional graphene films on gold substrates with controllable pore structures for high-performance electrochemical sensing. Adv Funct Mater 2015;24:7032.

    Article  CAS  Google Scholar 

  76. Zhang HL, Lv XB, Tian W, Hu ZF, Ji JY. One-pot fabrication of N, S Co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium–ion batteries. Chem Eng Sci 2021;234:116453.

    Article  CAS  Google Scholar 

  77. Huang J, Wang L, Peng ZY, Peng MK, Chen YW. Minimization of ion transport resistance: diblock copolymer micelles derived hierarchical pores arm nitrogen-doped carbon spheres for superior rate and power Zn-ion capacitors. J Mater Chem A 2021;6:4383.

    Google Scholar 

  78. Li Y, Yang W, Yang W, Wang ZQ, Dong LB. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nanomicro Lett 2021;13:95.

    CAS  Google Scholar 

  79. Yan JH, Dong KQ, Zhang YY, Wang X, Aboalhassan AA, Yu JY, Ding B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun 2019;10:5584.

    Article  CAS  Google Scholar 

  80. Yang X, Wu XH, Chen ZY, Li WQ, Sun QJ, Guo ZP, Liang XG, He Y. Hierarchically porous N-doped carbon nanofibers derived from ZIF-8/PAN composites for benzene adsorption. J Appl Polym Sci 2020;138:e50431.

    Article  CAS  Google Scholar 

  81. Zhang Z, Cai J, Zhu H, Zhuang Z, Xu F, Hao J, Lu S, Li H, Duan F, Du M. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms. Chem Eng J 2020;392:123655.

    Article  CAS  Google Scholar 

  82. Zhao Q, Yin MJ, Zhang AP, Prescher S, Antonietti M, Yuan JY. Hierarchically structured nanoporous poly(ionic liquid) membranes: facile preparation and application in fiber-optic pH sensing. J Am Chem Soc 2016;135:5549.

    Article  CAS  Google Scholar 

  83. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973.

    Article  CAS  Google Scholar 

  84. Wang LY, Di J, Nie J, Ma GP. Multicomponent doped sugar-coated nanofibers for peroxymonosulfate activation. ACS Appl Nano Mater 2019;2:6998.

    Article  CAS  Google Scholar 

  85. Ba H, Luo JJ, Liu YF, Guong DV, Tuci G, Giambastiani G, Nhut JM, Lam ND, Ersen O, Su DS, Cuong PH. Macroscopically shaped monolith of nanodiamonds@nitrogen-enriched mesoporous carbon decorated SiC as a superior metal-free catalyst for the styrene production. Appl Catal B 2017;200:343.

    Article  CAS  Google Scholar 

  86. Cao XJ, Wang TZ, Jiao LF. Transition-metal (Fe Co, and Ni)-based nanofiber electrocatalysts for water splitting. Adv Fiber Mater 2021;3:210.

    Article  CAS  Google Scholar 

  87. Li M, Xiong XP, Liu XT, Han C, Zhang YF, Bo XJ, Guo LP. iron and nitrogen co-doped carbon nanotube@hollow carbon fibers derived from plant biomass as efficient catalysts for the oxygen reduction reaction. J Mater Chem A 2015;3:9658.

    Article  CAS  Google Scholar 

  88. Zhong RQ, Zhi CX, Wu YX, Liang ZB, Tabassum H, Zhang H, Qiu TJ, Gao S, Shi JM, Zou RQ. Atomic Fe–N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chin Chem Lett 2020;31:1588.

    Article  CAS  Google Scholar 

  89. Jiao W, Yang ZR, Li XW, Sun QJ, Yang RZ. Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J Mater Chem A 2013;1:9889.

    Article  CAS  Google Scholar 

  90. Guo CX, Zheng Y, Ran JR, Xie FX, Jaroniec M, Qiao SZ. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew Chem Int Ed 2017;56:8539.

    Article  CAS  Google Scholar 

  91. Ji DX, Sun JG, Tian LD, Chinnappan A, Zhang TR, Jayathilaka WADM, Gosh R, Baskar C, Zhang QY, Ramakrishna S. Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis. Adv Funct Mater 2020;30:1910568.

    Article  CAS  Google Scholar 

  92. Zhang G, Liu G, Wang LZ, Irvine JTS. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 2016;45:5951.

    Article  CAS  Google Scholar 

  93. Zheng XZ, Zhang LW. Photonic nanostructures for solar energy conversion. Energy Environ Sci 2016;9:2511.

    Article  CAS  Google Scholar 

  94. Wei H, McMaster WA, Tan JZY, Cao L, Chen DH, Caruso RA. Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. J Phys Chem C 2017;121:22114.

    Article  CAS  Google Scholar 

  95. Wei H, Mcmaster WA, Tan JZY, Chen DH, Caruso RA. Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J Mater Chem A 2018;6:7236.

    Article  CAS  Google Scholar 

  96. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.

    Article  CAS  Google Scholar 

  97. Rong F, Lu QF, Mai HX, Chen DH, Caruso RA. Hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water. ACS Appl Mater Interfaces 2021;13:21138.

    Article  CAS  Google Scholar 

  98. Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 2013;52:3581.

    Article  CAS  Google Scholar 

  99. Zhang J, Cai YB, Hou XB, Zhou HM, Qiao H, Wei QF. Preparation of TiO2 nanofibrous membranes with hierarchical porosity for efficient photocatalytic degradation. J Phys Chem C 2018;122:8946.

    Article  CAS  Google Scholar 

  100. Ning J, Xin Z, Hu Y, Xu ZL, Wei YM. Preparation of porous PVDF nanofiber coated with Ag NPs for photocatalysis application. Fibers Polym 2016;17:21.

    Article  CAS  Google Scholar 

  101. Wang H, Liang LF, Cheng XJ, Luo YM, Sun S. Facile fabrication of porous ZnS and ZnO films by coaxial electrospinning for highly efficient photodegradation of organic dyes. Photochem Photobiol 2018;94:17.

    Article  CAS  Google Scholar 

  102. Lu BA, Zhu CQ, Zhang ZX, Lan W, Xie EQ. Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 2011;22:1375.

    Article  Google Scholar 

  103. Qin DD, Lu WY, Zhu ZX, Li N, Xu TF, Wang GQ, Chen WX. Free channel formation around graphitic carbon nitride embedded in porous polyethylene terephthalate nanofibers with excellent reusability for eliminating antibiotics under solar irradiation. Ind Eng Chem Res 2017;56:11151.

    Article  CAS  Google Scholar 

  104. Zhao GF, Zhang YY, Gao ZH, Li HM, Sun XL. Dual-active-site of Azo and carbonyl modified covalent organic framework for high-performance Li storage. ACS Energy Lett 2020;5:1022.

    Article  CAS  Google Scholar 

  105. Shi FY, Chen CH, Xu ZL. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater 2021. https://doi.org/10.1007/s42765-021-00070-2 .

    Article  Google Scholar 

  106. Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 2014;10:53.

    Article  CAS  Google Scholar 

  107. Dai ZX, Long ZW, Li RR, Shi C, Qiao H, Wang KL, Liu K. Metal-organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries. ACS Appl Energy Mater 2020;3:12378.

    Article  CAS  Google Scholar 

  108. Hwang SM, Kim SY, Kim JG, Kim KJ, Lee JW, Park MS, Kim YJ, Shahabuddin M, Yamauchi Y, Kim JH. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 2015;7:8351.

    Article  CAS  Google Scholar 

  109. Xiong Z, Sun DD, Jia XL, Zhou JS. Core/shell FeSe/carbon nanosheet-assembled microflowers with ultrahigh coulombic-efficiency and rate performance as nonpresodiate anode for sodium-ion battery. Carbon 2020;166:339.

    Article  CAS  Google Scholar 

  110. Shan CS, Feng X, Yang JX, Yang X, Guan HY, Argueta M, Wu XL, Liu DS, Austin DJ, Nie P, Yue YF. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon 2020;157:308.

    Article  CAS  Google Scholar 

  111. Xu YN, Wei QL, Xu C, Li QD, Mai LQ. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 2016;6:1600389.

    Article  CAS  Google Scholar 

  112. Li X, Huang YY, Wang JS, Miao L, Li YY, Liu Y, Qiu YG, Fang C, Han JT, Huang YH. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J Mater Chem A 2018;6:1390.

    Article  CAS  Google Scholar 

  113. Huang YY, Lia X, Wang JS, Miao L, Huang YH. Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater 2018;15:108.

    Article  Google Scholar 

  114. Wei P, Liu YX, Wang ZH, Huang YY, Jin Y, Liu Y, Sun SX, Qiu YG, Peng J, Xu Y, Sun XP, Fang C, Han JT, Huang YH. Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl Mater Interfaces 2018;10:27039.

    Article  CAS  Google Scholar 

  115. Li F, Li L, Yao TH, Liu T, Zhu L, Li YN, Lu HY, Qian RF, Liu Y, Wang HK. Electrospinning synthesis of porous carbon nanofiber supported CoSe2 nanoparticles towards enhanced sodium ion storage. Mater Chem Phys 2021;262:124314.

    Article  CAS  Google Scholar 

  116. Zhu SQ, Huang AM, Wang Q, Xu Y. MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries. Nanotechnology 2021;32:165401.

    Article  CAS  Google Scholar 

  117. Su Y, Fu B, Yuan GL, Ma M, Jin HY, Xie SH, Li JY. Three-dimensional mesoporous gamma-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnology 2020;31:155401.

    Article  CAS  Google Scholar 

  118. Li Q, Guo JN, Xu D, Guo JQ, Ou X, Hu Y, Qi HJ, Yan F. Electrospun N-doped porous carbon nanofibers incorporated with NiO nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO2 capture. Small 2018;14:1704203.

    Article  CAS  Google Scholar 

  119. Chen M, Le TH, Zhou YX, Kang FY, Yang Y. Thiourea-induced N/S dual-doped hierarchical porous carbon nanofibers for high-performance lithium-ion capacitors. ACS Appl Energy Mater 2020;3:1653.

    Article  CAS  Google Scholar 

  120. Jiang QT, Pang X, Geng ST, Zhao YH, Wang XM, Qin H, Liu B, Zhou J, Zhou T. Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Appl Surf Sci 2019;479:128.

    Article  CAS  Google Scholar 

  121. Hou LL, Wang N, Wu J, Cui ZM, Jiang L, Zhao Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater 2018;28:1801114.

    Article  CAS  Google Scholar 

  122. Lin JY, Shang YW, Ding B, Yang JM, Yu JY, Al-Deyab SS. Nanoporous polystyrene fibers for oil spill cleanup. Mar Pollut Bull 2012;64:347.

    Article  CAS  Google Scholar 

  123. Topuz F, Abdulhamid MA, Nunes SP, Szekely G. Hierarchically porous electrospun nanofibrous mats produced from intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. Environ Sci Nano 2020;7:1365.

    Article  CAS  Google Scholar 

  124. Zou WX, Gao B, Ok YS, Dong L. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 2019;218:845.

    Article  CAS  Google Scholar 

  125. Yu YX, Ma QY, Zhang JB, Liu GB. Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds. Appl Surf Sci 2020;512:145697.

    Article  CAS  Google Scholar 

  126. Sevilla M, Fuertes AB. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 2011;4:1765.

    Article  CAS  Google Scholar 

  127. Kong Y, Shen XD, Cui S, Fan MH. Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture. Appl Energy 2015;147:308.

    Article  CAS  Google Scholar 

  128. Pan YY, Li RS, Li PH, Wang Y, Zhu YL, Xu ZQ, Chen XQ, Sun ZG, Li C, Jiang BB. Facile fabrication of flexible, large-sized organic nanoporous membrane by electrospinning technique based on microporous polymer nanoparticles. Micropor Mesopor Mater. 2021;317:110955.

    Article  CAS  Google Scholar 

  129. Suss ME, Presser V. Water desalination with energy storage electrode materials. Joule 2018;2:10.

    Article  Google Scholar 

  130. Wu RB, Zhou K, Yue CY, Wei J, Pan Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 2015;72:1.

    Article  CAS  Google Scholar 

  131. Wang Y, Huang HB, Zhao Y, Feng ZM, Fan HT, Sun T, Xu Y. Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram Int 2020;46:768.

    Article  CAS  Google Scholar 

  132. Liu Y, Liu Y, Choi WC, Chae S, Lee J, Kim BS, Park M, Kim HY. Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators. J Mater Chem A 2017;5:2664.

    Article  CAS  Google Scholar 

  133. Zhang L, Liu W, Wen X, Chen JY, Zhao CS, Castillo-Rodríguez M, Yang LW, Zhang XQ, Wang R, Wang DY. Electrospun submicron NiO fibers combined with nanosized carbon black as reinforcement for multi-functional poly(lactic acid) composites. Compos Part A Appl Sci Manuf 2020;129:105622.

    Google Scholar 

  134. Vahabi H, Wu H, Saeb MR, Koo JH, Ramakrishna S. Electrospinning for developing flame retardant polymer materials: current status and future perspectives. Polymer 2021;217:123466.

    Article  CAS  Google Scholar 

  135. Cui Y, Gong HX, Wang YJ, Li DW, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater 2018;30:1706807.

    Article  CAS  Google Scholar 

  136. Park M, Park HK, Shin HK, Kang D, Pant B, Kim H, Song JK, Kim HY. Sound absorption and insulation properties of a polyurethane foam mixed with electrospun nylon-6 and polyurethane nanofibre mats. J Nanosci Nanotechnol 2019;19:3558.

    Article  CAS  Google Scholar 

  137. Cho YS, Lee HJ. Fabrication of porous silica fibers by electrospinning for sound absorbing materials. Arch Metall Mater 2018;63:1497.

    CAS  Google Scholar 

  138. Liang XH, Quan B, Chen JB, Gu WH, Zhang BS, Ji GB. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl Nano Mater 2018;1:5712.

    Article  CAS  Google Scholar 

  139. Abdalla I, Elhassan A, Yu JY, Li ZL, Ding B. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 2020;157:703.

    Article  CAS  Google Scholar 

  140. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M. Mesoporous materials as gas sensors. Chem Soc Rev 2013;42:4036.

    Article  CAS  Google Scholar 

  141. Wales DJ, Grand J, Ting VP, Burke RD, Edler KJ, Bowen CR, Mintova S, Burrows AD. Gas sensing using porous materials for automotive applications. Chem Soc Rev 2015;44:4290.

    Article  CAS  Google Scholar 

  142. Sun YJ, Wang ZP, Wang WD, Li G, Li PW, Lian K, Zhang WD, Zhuiykov S, Hu J, Chen L. Electrospinning preparation of Pd@Co3O4–ZnO composite nanofibers and their highly enhanced VOC sensing properties. Mater Res Bull 2019;109:255.

    Article  CAS  Google Scholar 

  143. Choi SJ, Chattopadhyay S, Kim JJ, Kim SJ, Tuller HL, Rutledge GC, Kim ID. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 2016;8:9159.

    Article  CAS  Google Scholar 

  144. Al-Hazeem NZ, Ahmed NM, Matjafri MZ, Bououdina M. Hydrogen gas sensor based on nanofibers TiO2-PVP thin film at room temperature prepared by electrospinning. Microsyst Technol 2020;27:293.

    Article  CAS  Google Scholar 

  145. Wang LL, Gao J, Wu BF, Kan K, Xu S, Xie Y, Li L, Shi KY. Designed synthesis of In2O3 beads@TiO2–In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl Mater Interfaces 2015;7:27152.

    Article  CAS  Google Scholar 

  146. Duan HJ, Wang YF, Li S, Li HY, Liu L, Du LT, Cheng YL. Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor. J Mater Sci 2017;53:3267.

    Article  CAS  Google Scholar 

  147. Choi SJ, Kim SJ, Koo WT, Cho HJ, Kim ID. Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. Chem Commun 2015;51:2609.

    Article  CAS  Google Scholar 

  148. Liang XS, Jin GX, Liu FM, Zhang XS, An SS, Ma J, Lu GY. Synthesis of In2O3 hollow nanofibers and their application in highly sensitive detection of acetone. Ceram Int 2015;41:13780.

    Article  CAS  Google Scholar 

  149. Lee JH, Kim J, Liu D, Guo F, Shen X, Zheng Q, Jeon S, Kim JK. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv Funct Mater 2019;29:1901623.

    Article  CAS  Google Scholar 

  150. Chen YJ, Mensah A, Wang QQ, Li DW, Qiu YY, Wei QF. Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: physico-chemical characterization and potential biomedical applications. Mater Sci Eng C Mater Biol Appl 2020;115:111155.

    Article  CAS  Google Scholar 

  151. Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer–titanium dioxide nanocomposites. Chem Eng J 2019;358:1262.

    Article  CAS  Google Scholar 

  152. Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc–curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer 2018;142:244.

    Article  CAS  Google Scholar 

  153. Nemati S, Kim SJ, Shin YM, Shin H. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 2019;6:36.

    Article  CAS  Google Scholar 

  154. Cheng G, Yin CC, Tu H, Jiang S, Li ZB. Controlled Co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneration. ACS Nano 2019;13:6372.

    Article  CAS  Google Scholar 

  155. Chen YJ, Qiu YY, Chen WBF, Wei QF. Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. Mater Sci Eng C Mater Biol Appl 2020;109:110536.

    Article  CAS  Google Scholar 

  156. He HY, Wang J, Gao Q, Chang MW, Ren ZH, Zhang XW, Li X, Weng WJ, Han GR. Ag-silica composite nanotube with controlled wall structures for biomedical applications. Colloids Surf B 2013;111:693.

    Article  CAS  Google Scholar 

  157. Tan ZK, Gao XK, Liu T, Yang YK, Zhong JC, Tong CY, Tan YJ. Electrospun vein grafts with high cell infiltration for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 2017;81:407.

    Article  CAS  Google Scholar 

  158. Gao P, Li JH, Shi QW. A hollow polyethylene fiber-based artificial muscle. Adv Fiber Mater 2019;1:214.

    Article  Google Scholar 

  159. Nguyen T, Ghosh C, Hwang SG, Chanunpanich N, Park JS. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 2012;439:296.

    Article  CAS  Google Scholar 

  160. Zhao JW, Cui WG. Functional electrospun fibers for local therapy of cancer. Adv Fiber Mater 2020;2:229.

    Article  CAS  Google Scholar 

  161. Zhou QH, Bao M, Yuan HH, Zhao SF, Dong W, Zhang YZ. Implication of stable jet length in electrospinning for collecting well-aligned ultrafine plla fibers. Polymer 2013;54:6867.

    Article  CAS  Google Scholar 

  162. Zhang X, Guo S, Qin Y, Li C. Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem Res Chin Univ 2021;37:379.

    Article  CAS  Google Scholar 

  163. Wang M, Hou J, Yu D-G, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloy Compd 2020;846:156471.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (NSFC) (Grant nos. 22175007, 21975007, 22105012 and 52172080), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University (Grant no. KF2021), National Natural Science Foundation for Outstanding Youth Foundation, the Fundamental Research Funds for the Central Universities, the National Program for Support of Top-notch Young Professionals, the 111 project (Grant no. B14009), the China Postdoctoral Science Foundation Funded Project (Grant no. 2020M680004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Ethics declarations

Conflict of interest

The authors declare that there is no financial and non-financial competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Hou, L., Yue, G. et al. Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Adv. Fiber Mater. 4, 604–630 (2022). https://doi.org/10.1007/s42765-022-00132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00132-z

Keywords

Navigation