Skip to main content
Log in

Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines

  • Original Article
  • Published:
Research on Biomedical Engineering Aims and scope Submit manuscript

Abstract

Purpose

Electrical impedance tomography (EIT) is an image technique based on the application of an alternating electrical current on electrodes placed on the surface of the domain, which are also responsible for measuring the resulting electrical potentials. EIT main advantages are portability, low cost, and nonuse of ionizing radiation. EIT image reconstruction depends on the resolution of the direct and inverse problems, which is nonlinear and ill-posed. Several reconstruction methods have been used to solve EIT inverse problem, from Newton-based methods to bio- and social-inspired metaheuristics.

Method

In this work, we propose a new approach: the use of random-weighted neural networks, specifically extreme learning machines (ELM), to approximate sinograms from electrical potential data and, therefore, use the classical backprojection algorithm for image reconstruction. We generated a database of 4000 synthetic 128 × 128 images. We trained 16 ELMs corresponding to a 16-electrode EIT system placed on a circular domain.

Results

Results were evaluated according to peak-to-noise ratio (PSNR) and Structural Similarity Index (SSIM), as well as visual inspection. Results are fair and similar to image reconstructions obtained by the direct application of the backprojection algorithm, in case this reconstruction problem would be a classic tomographic reconstruction.

Conclusion

Our work suggested the use of ELMs to create sinograms from the electrical potential data of the studied domain. Sinograms could be easily reconstructed by the backprojection technique for final image generation, where objects and domain are represented. Finally, we were able to reduce the time of EIT reconstruction, mainly due to the high speed of the ELMs, and obtain reasonable and consistent images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham A. Artificial neural networks. Handbook of Measuring System Design. 2005.

  • Adler A, Arnold JH, Bayford R, Borsic A, Brown B, Dixon P, et al. Greit: a unified approach to 2d linear eit reconstruction of lung images. Physiol Meas. 2009;30(6):S35.

    Google Scholar 

  • Alves SH, Amato MB, Terra RM, Vargas FS, Caruso P. Lung reaeration and reventilation after aspiration of pleural effusions. a study using electrical impedance tomography. Ann Am Thoracic Soc. 2014;11(2):186–91.

    Google Scholar 

  • Azad NL, Mozaffari A, Fathi A. An optimal learning-based controller derived from Hamiltonian function combined with a cellular searching strategy for automotive coldstart emissions. Int J Mach Learn Cybern. 2017;8(3):955–79.

    Google Scholar 

  • Azevedo WW, Lima SM, Fernandes IM, Rocha AD, Cordeiro FR, da Silva-Filho AG, dos Santos WP. Fuzzy morphological extreme learning machines to detect and classify masses in mammograms. In 2015 IEEE International Conference on Fuzzy Systems (fuzz-IEEE). 2015, pages 1–8. IEEE.

  • Barber D, Brown B, Avis N. Image reconstruction in electrical impedance tomography using filtered back-projection. In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1992; volume 5, pages 1691–1692. IEEE.

  • Barbosa VA, Ribeiro RR, Feitosa AR, Silva VL, Rocha AD, Freitas RC, et al. Reconstruction of electrical impedance tomography using fish school search, non-blind search, and genetic algorithm. Int J Swarm Intell Res. 2017;8(2):17–33.

    Google Scholar 

  • Barbosa VA, Ribeiro RR, Feitosa AR, Silva VL, Rocha AD, Freitas RC, Souza RE, Santos WP. Reconstruction of electrical impedance tomography using fish school search, non-blind search, and genetic algorithm. In Biotechnology: Concepts, Methodologies, Tools, and Applications, pages 2021–2038. IGI Global, 2019.

  • Bayford RH. Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng. 2006;8:63–91.

    Google Scholar 

  • Beltrán JD, Boscor A, dos Santos WP, Massoni T, Kostkova P. Zika: a new system to empower health workers and local communities to improve surveillance protocols by e-learning and to forecast Zika virus in real time in Brazil. In Proceedings of the 2018 International Conference on Digital Health. 2018, pages 90–94.

  • Bera TK, Biswas SK, Rajan K, Nagaraju J. Improving image quality in electrical impedance tomography (eit) using projection error propagation-based regularization (pepr) technique: a simulation study. J Electr Bioimpedance. 2011;2(1):2–12.

    Google Scholar 

  • Brown BH. Electrical impedance tomography (eit): a review. J Med Eng Technol. 2003;27(3):97–108.

    MathSciNet  Google Scholar 

  • Cambuim LF, Macieira RM, Neto FM, Barros E, Ludermir TB, Zanchettin C. An efficient static gesture recognizer embedded system based on elm pattern recognition algorithm. J Syst Archit. 2016;68:1–16.

    Google Scholar 

  • Cao W, Wang X, Ming Z, Gao J. A review on neural networks with random weights. Neurocomputing. 2018;275:278–87.

    Google Scholar 

  • Cheney M, Isaacson D, Newell JC. Electrical impedance tomography. SIAM Rev. 1999;41(1):85–101.

    MathSciNet  MATH  Google Scholar 

  • Clay M, Ferree TC. Weighted regularization in electrical impedance tomography with applications to acute cerebral stroke. IEEE Trans Med Imaging. 2002;21(6):629–37.

    Google Scholar 

  • Cordeiro FR, Lima SM, Silva-Filho AG, Santos W. Segmentation of mammography by applying extreme learning machine in tumor detection. In: International Conference on Intelligent Data Engineering and Automated Learning: Springer; 2012. p. 92–100.

  • Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.

    MATH  Google Scholar 

  • Cruz T, Cruz T, Santos W. Detection and classification of lesions in mammographies using neural networks and morphological wavelets. IEEE Lat Am Trans. 2018;16(3):926–32.

    Google Scholar 

  • Dai M, Li B, Hu S, Xu C, Yang B, Li J, et al. In vivo imaging of twist drill drainage for subdural hematoma: a clinical feasibility study on electrical impedance tomography for measuring intracranial bleeding in humans. PloS one. 2013;8(1):e55020.

    Google Scholar 

  • Daniel G. Principles of artificial neural networks, volume 7. World Scientific. 2013.

  • de Freitas RC, Alves R, da Silva Filho AG, de Souza RE, Bezerra BL, dos Santos WP. Electromyography-controlled car: a proof of concept based on surface electromyography, extreme learning machines and low-cost open hardware. Comput Electr Eng. 2019;73:167–79.

    Google Scholar 

  • de Lima SM, da Silva-Filho AG, dos Santos WP. A methodology for classification of lesions in mammographies using Zernike moments, elm and svm neural networks in a multi-kernel approach. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2014, pages 988–991. IEEE.

  • de Lima SM, da Silva-Filho AG, dos Santos WP. Detection and classification of masses in mammographic images in a multi-kernel approach. Comput Methods Prog Biomed. 2016;134:11–29.

    Google Scholar 

  • de Santana MA, Pereira JMS, da Silva FL, de Lima NM, de Sousa FN, de Arruda GMS, et al. Breast cancer diagnosis based on mammary thermography and extreme learning machines. Res Biomed Eng. 2018;34(1):45–53.

    Google Scholar 

  • Dijkstra A, Brown B, Leathard A, Harris N, Barber D, Edbrooke D. Review clinical applications of electrical impedance tomography. J Med Eng Technol. 1993;17(3):89–98.

    Google Scholar 

  • dos Santos WP, de Souza RE, de Freitas RC, Ribeiro DE, da Silva VLBA, de Freitas Barbosa VA, et al. Hybrid metaheuristics applied to image reconstruction for an electrical impedance tomography prototype. In: Bhattacharyya S, editor. Hybrid Metaheuristics for Image Analysis. Cham: Springer; 2018a. p. 209–51.

    Google Scholar 

  • dos Santos WP, de Souza RE, Ribeiro RR, Feitosa ARS, Barbosa VAF, da Silva VLBA, et al. Electrical impedance tomography using evolutionary computing: a review. In: Bio-Inspired Computing for Image and Video Processing: Chapman and Hall/CRC; 2018b. p. 93–128.

  • dos Santos MM, da Silva Filho AG, dos Santos WP. Deep convolutional extreme learning machines: filters combination and error model validation. Neurocomputing. 2019;329:359–69.

    Google Scholar 

  • Fardo FA, Conforto VH, de Oliveira FC, Rodrigues PS. A formal evaluation of psnr as quality measurement parameter for image segmentation algorithms. arXiv preprint arXiv:1605.07116. 2016.

  • Feitosa AR, Ribeiro RR, Barbosa VA, de Souza RE, dos Santos WP. Reconstruction of electrical impedance tomography images using particle swarm optimization, genetic algorithms and non-blind search. In 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), pages 1–6. IEEE; 2014a.

  • Feitosa AR, Ribeiro RR, Barbosa VA, de Souza RE, dos Santos WP. Reconstruction of electrical impedance tomography images using chaotic ring-topology particle swarm optimization and non-blind search. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 2618–2623. IEEE; 2014b.

  • Frerichs I. Electrical impedance tomography (eit) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas. 2000;21(2):R1.

    Google Scholar 

  • Goel T, Nehra V, Vishwakarma VP. An adaptive non-symmetric fuzzy activation function-based extreme learning machines for face recognition. Arab J Sci Eng. 2017;42(2):805–16.

    Google Scholar 

  • Guardo R, Boulay C, Murray B, Bertrand M. An experimental study in electrical impedance tomography using backprojection reconstruction. IEEE Trans Biomed Eng. 1991;38(7):617–27.

    Google Scholar 

  • Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput. 2017;9(4):581–95.

    Google Scholar 

  • Hamilton SJ, Hauptmann A. Deep d-bar: real time electrical impedance tomography imaging with deep neural networks. IEEE Trans Med Imaging. 2018;37:2367–77.

    Google Scholar 

  • Haykin S. Redes neurais: princípios e prática. Bookman Editora. 2007.

  • Hayt Jr WH, Kemmerly JE, Durbin SM. Análise de Circuitos em Engenharia-8. AMGH Editora. 2014.

  • He Y-L, Wang X-Z, Huang JZ. Fuzzy nonlinear regression analysis using a random weight network. Inf Sci. 2016;364:222–40.

    MATH  Google Scholar 

  • Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.

    Google Scholar 

  • Hinton GE. How neural networks learn from experience. Sci Am. 1992;267(3):144–51.

    Google Scholar 

  • Holder D. Clinical and physiological applications of electrical impedance tomography: CRC Press; 1993.

  • Holder DS. Electrical impedance tomography: methods, history and applications: CRC Press; 2004.

  • Hopfield JJ. Artificial neural networks. IEEE Circ Devices Mag. 1988;4(5):3–10.

    Google Scholar 

  • Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. SPIE Bellingham, WA; 2009.

  • Huang G-B. What are extreme learning machines? filling the gap between frank rosenblattâA˘ Zs dream and john von neumannâ´ A˘ Zs puzzle´. Cogn Comput. 2015;7(3):263–78.

    Google Scholar 

  • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 985–990. IEEE; 2004.

  • Huang G-B, Chen L, Siew CK, et al. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006a;17(4):879–92.

    Google Scholar 

  • Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006b;70(1–3):489–501.

    Google Scholar 

  • Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybernetics). 2012;42(2):513–29.

    Google Scholar 

  • Ider YZ, Onart S, Lionheart WR. Uniqueness and reconstruction in magnetic resonance–electrical impedance tomography (mr–eit). Physiol Meas. 2003;24(2):591.

    Google Scholar 

  • Jaszczak RJ, Floyd CE Jr, Manglos SH, Greer KL, Coleman RE. Cone beam collimation for single photon emission computed tomography: analysis, simulation, and image reconstruction using filtered backprojection. Med Phys. 1986;13(4):484–9.

    Google Scholar 

  • Khang HS, Lee BI, Oh SH, Woo EJ, Lee SY, Cho MH, et al. J-substitution algorithm in magnetic resonance electrical impedance tomography (mreit): phantom experiments for static resistivity images. IEEE Trans Med Imaging. 2002;21(6):695–702.

    Google Scholar 

  • Kim S, Kwon O, Seo JK, Yoon J-R. On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography. SIAM J Math Anal. 2002;34(3):511–26.

    MathSciNet  MATH  Google Scholar 

  • Kim KS, Choi HH, Moon CS, Mun CW. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr Appl Phys. 2011;11(3):740–5.

    Google Scholar 

  • Kostkova P, Pinheiro dos Santos W, Massoni T. Zika: improved surveillance and forecast of Zika virus in Brazil: Patty Kostkova. Eur J Public Health. 2019;29(Supplement_4):ckz186–085.

    Google Scholar 

  • Kubat M. Artificial neural networks. In: An Introduction to Machine Learning: Springer; 2015. p. 91–111.

  • Kumar SP, Sriraam N, Benakop P, Jinaga B. Reconstruction of brain electrical impedance tomography images using particle swarm optimization. In Industrial and Information Systems (ICIIS), 2010 International Conference on, pages 339–342. IEEE; 2010.

  • Kwon O, Woo EJ, Yoon J-R, Seo JK. Magnetic resonance electrical impedance tomography (mreit): simulation study of j-substitution algorithm. IEEE Trans Biomed Eng. 2002;49(2):160–7.

    Google Scholar 

  • Larose DT. k-Nearest neighbor algorithm. In: Discovering knowledge in data: An introduction to data mining; 2005. p. 90–106.

    MATH  Google Scholar 

  • Lei J, Mu H, Liu Q, Wang X, Liu S. Data-driven reconstruction method for electrical capacitance tomography. Neurocomputing. 2018;273:333–45.

    Google Scholar 

  • Li T, Isaacson D, Newell JC, Saulnier GJ. Adaptive techniques in electrical impedance tomography reconstruction. Physiol Meas. 2014;35(6):1111.

    Google Scholar 

  • Li Q, Zhao T, Zhang L, Sun W, Zhao X. Ferrography wear particles image recognition based on extreme learning machine. J Electr Comput Eng. 2017;2017:1–6.

    Google Scholar 

  • Lu J, Zhao J, Cao F. Extended feed forward neural networks with random weights for face recognition. Neurocomputing. 2014;136:96–102.

    Google Scholar 

  • Martin S, Choi CT. Nonlinear electrical impedance tomography reconstruction using artificial neural networks and particle swarm optimization. IEEE Trans Magn. 2016;52(3):1–4.

    Google Scholar 

  • McCann MT, Vilaclara L, Unser M. Region of interest x-ray computed tomography via corrected back projection. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 65–69. IEEE; 2018.

  • Meisel WS. Computer-oriented approaches to pattern recognition. Technical report, Technology Service Corp Santa Monica Calif. 1972.

  • Menon R, Di Caterina G, Lakany H, Petropoulakis L, Conway BA, Soraghan JJ. Study on interaction between temporal and spatial information in classification of EMG signals for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng. 2017. ISSN 15344320;25(10):1832–42. https://doi.org/10.1109/TNSRE.2017.2687761.

    Article  Google Scholar 

  • Miao L, Ma Y, Wang J. Roi-based image reconstruction of electrical impedance tomography used to detect regional conductivity variation. IEEE Trans Instrum Meas. 2014;63(12):2903–10.

    Google Scholar 

  • Ogava R, Soares N, Gomes J, Barbosa V, Ribeiro R, de Souza E, dos Santos W. Algoritmo de evolução diferencial hibridizado e simulated annealing aplicados a tomografia por impedância elétrica. I Simpósio de Inovação em Engenharia Biomédica - SABIO 2017. 2017.

  • Oh SH, Lee BI, Woo EJ, Lee SY, Cho MH, Kwon O, et al. Conductivity and current density image reconstruction using harmonic bz algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol. 2003;48(19):3101.

    Google Scholar 

  • Pak D, Rozhkova N, Kireeva M, Ermoshchenkova M, Nazarov A, Fomin D, et al. Diagnosis of breast cancer using electrical impedance tomography. Biomed Eng. 2012;46(4):154–7.

    Google Scholar 

  • Pao Y-H, Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities. Computer. 1992;25(5):76–9.

    Google Scholar 

  • Ribeiro RR, Feitosa AR, de Souza RE, dos Santos WP. A modified differential evolution algorithm for the reconstruction of electrical impedance tomography images. In 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), pages 1–6. IEEE; 2014a.

  • Ribeiro RR, Feitosa AR, de Souza RE, dos Santos WP. Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search. In Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, pages 153–156. IEEE; 2014b.

  • Ribeiro RR, Feitosa AR, de Souza RE, dos Santos WP. Reconstruction of electrical impedance tomography images using chaotic self-adaptive ring-topology differential evolution and genetic algorithms. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 2605–2610. IEEE; 2014c.

  • Riffenburgh RH. Linear discriminant analysis: PhD thesis, Virginia Polytechnic Institute; 1957.

  • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386.

    Google Scholar 

  • Rubio-Solis A, Musah A, dos Santos WP, Massoni T, Birjovanu G, Kostkova P. Zika virus: prediction of Aedes mosquito larvae occurrence in Recife (Brazil) using online extreme learning machine and neural networks. In Proceedings of the 9th International Conference on Digital Public Health. 2019; pages 101–110.

  • Salomon D. Data compression: the complete reference. 3rd. Springer Science & Business Media, California; 2004.

  • Santosa F, Vogelius M. A backprojection algorithm for electrical impedance imaging. SIAM J Appl Math. 1990;50(1):216–43.

    MathSciNet  MATH  Google Scholar 

  • Schmidt WF, Kraaijveld MA, Duin RP. Feedforward neural networks with random weights. In 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems. 1992; pages 1–4. IEEE.

  • Seo JK, Woo EJ. Magnetic resonance electrical impedance tomography (mreit). SIAM Rev. 2011;53(1):40–68.

    MathSciNet  MATH  Google Scholar 

  • Shi Y, Meng F, Mao Y, Li C, Zhu S. Combination strategy of deep learning and direct back projection for high-efficiency computed tomography reconstruction. In Proceedings of the Third International Symposium on Image Computing and Digital Medicine. 2019; pages 293–297.

  • J. N. Tehrani, C. Jin, A. McEwan, and A. van Schaik. A comparison between compressed sensing algorithms in electrical impedance tomography. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pages 3109–3112. IEEE; 2010.

  • Waldmann AD, Wodack KH, März A, Ukere A, Trepte CJ, Böhm SH, et al. Performance of novel patient interface for electrical impedance tomography applications. J Med Biol Eng. 2017;37(4):561–6.

    Google Scholar 

  • Wan Y, Borsic A, Heaney J, Seigne J, Schned A, Baker M, et al. Transrectal electrical impedance tomography of the prostate: spatially coregistered pathological findings for prostate cancer detection. Med Phys. 2013;40(6Part1).

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.

    Google Scholar 

  • Wang DD, Wang R, Yan H. Fast prediction of protein–protein interaction sites based on extreme learning machines. Neurocomputing. 2014;128:258–66.

    Google Scholar 

  • Wang H, Xu G, Zhang S, Yan W. An implementation of generalized back projection algorithm for the 2-d anisotropic eit problem. IEEE Trans Magn. 2015;51(3):1–4.

    Google Scholar 

  • Wang Q, Lian Z, Wang J, Chen Q, Sun Y, Li X, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation. Rev Sci Instrum. 2016;87(11):114707.

    Google Scholar 

  • Woo EJ, Seo JK. Magnetic resonance electrical impedance tomography (mreit) for high-resolution conductivity imaging. Physiol Meas. 2008;29(10):R1.

    Google Scholar 

  • Wu T, Yao M, Yang J. Dolphin swarm extreme learning machine. Cogn Comput. 2017;9(2):275–84.

    Google Scholar 

  • Xu M, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005;71(1):016706.

    Google Scholar 

  • Zimbico AJ. Análise comparativa de técnicas de compressão aplicadas a imagens médicas usando ultrassom. Master’s thesis, Universidade Tecnológica Federal do Paraná. 2014.

Download references

Funding

The authors are grateful to the Brazilian research agencies CAPES and CNPq for the partial financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington Pinheiro dos Santos.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, J.C., Barbosa, V.A.F., Ribeiro, D.E. et al. Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines. Res. Biomed. Eng. 36, 399–410 (2020). https://doi.org/10.1007/s42600-020-00079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42600-020-00079-3

Keywords

Navigation