Skip to main content
Log in

Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyze the effect of chemically synthesized silver nanoparticles (AgNPs) on in vitro regeneration of carnation cultivars cv. Noblessa, cv. Antigua and cv. Mariposa. Number of shoots/explant of cv. Noblesse and cv. Antigua significantly increased at 6 mg/L AgNPs (average 7.33 shoots per explant) when supplemented in MS media. While cv. Mariposa showed highest regeneration rate at 8 mg/L (average 10 shoots per explant). High concentration of AgNPs (12 mg/L) in the medium enhanced rooting response, number of roots/plant, and root length as compared with control. The fresh and dry weight of regenerated plants significantly (P < 0.05) increased at 6 mg/L. DPPH based free radical scavenging activity, total antioxidant activity and reducing power potential of regenerated plants varied depending upon concentration of AgNPs in the media. To find non-enzymatic antioxidants to combat oxidative damage, total phenolics and flavonoids were also determined in the regenerated plants. The study concludes that metallic nanoparticles has significant effect on in vitro growth of carnation cultivars however concentration dependent. Furthermore, nanoparticles can be effectively used for increased in vitro shoot multiplication and regeneration of floriculture plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271:165–170

    PubMed  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107

    CAS  Google Scholar 

  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnol 4:634–641

    CAS  Google Scholar 

  • Bell PF, Chaney RL, Angle JS (1991) Free metal activity and total metal concentrations as indices of micro nutrient availability to barley [(Hordeum vulgare L. Klages]. Plant Soil 130:51–62

    CAS  Google Scholar 

  • Bernard F, Moghadam NN, Mirzajani F (2015) The effect of colloidal silver nanoparticles on the level of lignification and hyperhydricity syndrome in Thymus daenensis vitro shoots: a possible involvement of bonded polyamines. Vitro Cell Dev Biol Plant 51:546–553

    CAS  Google Scholar 

  • Chang S-T, Wu J-H, Wang S-Y, Kang P-L, Yang N-S, Shyur L-F (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49:3420–3424

    CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    CAS  PubMed  Google Scholar 

  • Chopra VL (1986) Relevance of basic research in agriculture. Indian J Genet Plant Breed 46(1):181–184

    Google Scholar 

  • Deb MS, Jamir N, Deb CR (2014) In vitro culture of immature embryos of Cinnamomum tamala Nees.—The role of different factors. Indian J Exp Biol 52(10):1003–1010

    PubMed  Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119

    CAS  PubMed  Google Scholar 

  • Ghosh A, Hossain MM, Sharma M (2014) Mass propagation of Cymbidium giganteum Wall. ex Lindl. using in vitro seedlings. Indian J Exp Biol 52(9):905–911

    PubMed  Google Scholar 

  • Hemalatha S, Lalitha P, Arulpriya P (2010) Antioxidant activities of the extracts of the aerial roots of Pothosaurea. Linden ex Andre. Der Pharma Chemica 2:84–89

    CAS  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    PubMed  Google Scholar 

  • Javed R, Usman M, Tabassum S, Zia M (2016) Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci 386:319–326

    CAS  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    PubMed  Google Scholar 

  • Kanner J, Frankel E, Granit R, German B, Kinsella JE (1994) Natural antioxidants in grapes and wines. J Agric Food Chem 42:64–69

    CAS  Google Scholar 

  • Koontz HV, Berle KL (1980) Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiol 65:336–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Proc Biochem 47(4):651–658

    CAS  Google Scholar 

  • Kumar V, Ramakrishna A, Ravishankar G (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol Plant 43:602–607

    CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    CAS  PubMed  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    CAS  PubMed  Google Scholar 

  • Lü P, Cao J, He S, Liu J, Li H, Cheng G, Ding Y, Joyce DC (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57:196–202

    Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles ENPs and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    CAS  PubMed  Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430

    CAS  PubMed  Google Scholar 

  • Mangal M, Sharma D, Sharma M (2014) In vitro regeneration in olive. Olea europaea L. cv, ‘Frontio’from nodal segments. Indian J Exp Biol 52(9):912–916

    PubMed  Google Scholar 

  • Mather C (2008) Value chains and tropical products in a changing global trade regime. International Centre for Trade and Sustainable Development, ICTSD, Geneva

    Google Scholar 

  • Mazumdar H, Ahmed G (2011) Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiate and Brassica campestris. Int J Advbiotechnol Res 2:404–413

    CAS  Google Scholar 

  • McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel. Foeniculum vulgare. seed extracts. LWT Food Sci Technol 36:263–271

    CAS  Google Scholar 

  • Onamu R, Obukosia SD, Musembi N, Hutchinson MJ (2003) Efficacy of thidiazuron in in vitro propagation of carnation shoot tips: Influence ofdose and duration of exposure. Afr Crop Sci J 11(2):125–132

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pant M (2016) A minimal cost micropropagation protocol for Dianthus caryophyllus L.–a commercially significant venture. Indian J Exp Biol 54:203–211

    PubMed  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    CAS  PubMed  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab H, Mahmood T, Hafeez A, Hussain S (2015) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58

    Google Scholar 

  • Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean. Glycine max L. at Shahr-e-Qods, Iran. Biol Forum 7(1):957 (Research Trend)

    CAS  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nanosilver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6:517–522

    Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    CAS  PubMed  Google Scholar 

  • Sparnaaij LD, Koehorst HJJ, Segers TA (1990) The inheritance of premature flowering in regenerants from carnation ovaries. In: Integration of in vitro techniques in ornamental plant breeding. Proceedings, symposium. EUCARPIA, pp 68–73

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  PubMed  Google Scholar 

  • Stone V, Johnston H, Clift MJ (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 6:331–340

    Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    CAS  PubMed  Google Scholar 

  • Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol 181(1):365–378

    CAS  PubMed  Google Scholar 

  • Zia M, Gul S, Akhtar J, Ul Haq I, Abbasi BH, Hussain A et al (2016) Green synthesis of silver nanoparticles fromgrape and tomato juices and evaluation of biological activities. IET nanobiotechnol 11(2):193–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, M., Yaqoob, K., Mannan, A. et al. Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions. Vegetos 33, 11–20 (2020). https://doi.org/10.1007/s42535-019-00074-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-019-00074-9

Keywords

Navigation