Skip to main content
Log in

Optimal Design of a Composite Lattice Rectangular Plate for Solar Panels of a High-Agility Satellite

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This paper proposes that a composite lattice rectangular plate is applied to the solar panel for a high-agility satellite. We define the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties to an intersection and mode shape function of the composite lattice rectangular plate, which is assumed to be a Kirchhoff–Love plate. We subsequently present an approximate method of conducting vibration, buckling analyses of the lattice plate for the solar panel with a torsional spring using the Ritz method. This method considers the buckling as well as the vibration characteristics (natural frequencies and modes). The validity of the present method is verified by comparing the results of the finite-element analysis. Finally, we apply the method to optimize the lattice plate for a solar panel in a high-agility satellite minimizing mass with a limited area. Consequently, we conclude that the present method is very useful not only vibration and buckling analyses of the composite lattice structures but also optimization due to their relative simplicity and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(A_{ij }\) :

Effective membrane stiffness coefficients

\(a_{IJ }\) :

Mode shape coefficients for the deployed solar panel

\(a_\mathrm{ts}\) :

Mode shape coefficient for the torsional spring

\(B_{ij }\) :

Effective membrane-bending stiffness coefficients

\(b_{I }\) :

Mode shape coefficients for the un-deployed solar panel

\(D_{ij }\) :

Effective bending stiffness coefficients

\(E_{i }\) :

Modulus of elasticity in the i direction

\(\varepsilon _{0 }\) :

Mid-plane strains

\(\varepsilon _{i }\) :

Normal strain component in the idirection

\(\phi \) :

Angle of orientations of diagonal ribs

\(G_{ij }\) :

Shear modulus

\(\gamma _{ij }\) :

Engineering shear strain component

H :

Height of the ribs

KE :

Kinetic energy

\(k_\mathrm{ts}\) :

Stiffness of the torsional spring

\(\kappa \) :

Mid-plane curvatures

\(L_{a }\) :

Length of the composite lattice rectangular plate

\(L_{b }\) :

Width of the composite lattice rectangular plate

\(l_{d }\) :

Distance between diagonal ribs

\(l_{t }\) :

Distance between transverse ribs

\(M_{ij }\) :

Bending moments

\(N_{x }\) :

In-plane compressive intensity

\(n_{d }\) :

Number of diagonal ribs

\(n_{t }\) :

Number of transverse ribs

PE :

Potential energy

\(Q_{ij }\) :

Reduced stiffness

\(\theta _{k }\) :

Orientation of ribs

\(\theta _\mathrm{ts}\) :

Rotational displacement of the torsional spring

\(\rho _\mathrm{eq }\) :

Equivalent density of the composite lattice rectangular plate

\(\rho _\mathrm{mat}\) :

Density of the composite lattice rectangular plate’s material

\(\sigma _{i }\) :

Normal stress component in the i direction

T :

Time function for the modal analysis

\(t_{d }\) :

Width of diagonal ribs

\(t_{t }\) :

Width of transverse ribs

\(\tau _{ij }\) :

Shear stress component

W :

External work

\(W_{b }\) :

Mode shape function for the buckling analysis

\(W_{m }\) :

Spatial function for the modal analysis

w :

Mode shape function for the modal analysis

\(\omega _{n}\) :

Natural frequencies of the composite lattice rectangular plate

\(v_{ij }\) :

Poisson’s ratios

\(X_{I }\) :

Spatial function for the buckling analysis

[a]:

Column matrix of an eigenvector for the modal analysis

[b]:

Column matrix of an eigenvector for the buckling analysis

[P]:

Square matrix for a generalized eigenvalue problem of the modal analysis

[Q]:

Square matrix for a generalized eigenvalue problem of the modal analysis

[R]:

Square matrix for a generalized eigenvalue problem of the buckling analysis

[S]:

Square matrix for a generalized eigenvalue problem of the buckling analysis

[T]\(_{k }\) :

Transformation matrix

[\(V_{f}\)]\(_{k }\) :

Volumetric fractions matrix

References

  1. Thomas PS, Wiley JL (1995) Spacecraft Structures and Mechanisms From Concept to Launch. Space Technology Library,

  2. Lim JH (2010) Recent Trend of the Configuration Design of High Resolution Earth Observation Satellites. Current Industrial and Technological Trends in Aerospace 8:45–54

    Google Scholar 

  3. He W, Ge SS (2015) Dynamic Modeling and Vibration Control of a Flexible Satellite. IEEE Transactions on Aerospace and Electronic Systems 51(2):1422–1431

    Article  Google Scholar 

  4. Liu J, Pan K (2016) Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerospace Science and Technology, No. 52:102–114

    Article  Google Scholar 

  5. Chung SW, Song JY, Kim SJ, Lee SH (2001) Vibration Analysis for Solar Panel of Science Satellite - I by Acoustic Excitation. Journal of The Korean Society for Aeronautical and Space Sciences 29(4):110–115

    Google Scholar 

  6. Kim YH, Kim MJ, Kim PH, Kim HY, Park JS, Roh JH, Bae JS (2016) Optimal Design of a High-Agility Satellite with Composite Solar panels. International Journal of Aeronautical and Space Sciences 17(4):112–121

    Google Scholar 

  7. Vasiliev VV, Barynin VA, Razin AF (2012) Anisogrid composite lattice structures - Development and aerospace applications. Composite Structures 94:1117–1127

    Article  Google Scholar 

  8. Aoki T, Yokozeki T, Yoshino S (2014) Mechanical behavior of composite lattice cylinders. 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. pp. 1-8

  9. Zhang Y, Xue Z, Chen L, Fang D (1993) Deformation and failure mechanisms of lattice cylindrical shells under axial loading. Journal of Mechanical Sciences 51(3):213–221

    Article  Google Scholar 

  10. Frulloni E, Kenny JM, Conti P, Torre L (2007) Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Composite Structures 78(4):519–528

    Article  Google Scholar 

  11. Wang D, Abdalla MM, Zhang W (2017) Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Composite Structures 159:656–666

    Article  Google Scholar 

  12. Vasiliev VV (1993) Mechanics of composite structures. Taylor & Francis,

  13. Vasiliev VV, Morozov EV (2013) Advanced mechanics of composite materials and structural elements, 3rd edn. Elsevier,

  14. Lopatin AV, Morozov EV, Shatov AV (2016) Buckling of uniaxially compressed composite anisogrid lattice plate with clamped edges. Composite Structures 157:187–196

    Article  Google Scholar 

  15. Lopatin AV, Morozov EV, Shatov AV (2017) Buckling of uniaxially compressed composite anisogrid lattice cylindrical panel with clamped edges. Composite Structures 160:765–772

    Article  Google Scholar 

  16. Lopatin AV, Morozov EV, Shatov AV (2017) Buckling of composite anisogrid lattice plate with clamped edges. Composite Structures 159:72–80

    Article  Google Scholar 

  17. Totaro G, Gürdal Z (2009) Optimal design of composite lattice shell structures for aerospace applications. Aerospace Science and Technology 13(4–5):157–164

    Article  Google Scholar 

  18. Totaro G (2015) Optimal design concepts for flat isogrid and anisogrid lattice panels longitudinally compressed. Composite Structures 129:101–110

    Article  Google Scholar 

  19. Reddy JN (2007) Theory and Analysis of Elastic Plates and Shells. CRC Press,

  20. Holland JH (1975) Adaptation in Natural and Artificial System. University of Michigan Press,

  21. Goldberg (2013) Genetic Algorithms in Search, Optimization, and Machine Learning. Pearson Education,

  22. Hwang DS (1999) Design and Analysis of Satellite Structure. Journal of The Korean Society for Aeronautical and Space Sciences 27(2):111–121

    Google Scholar 

Download references

Acknowledgements

This work was supported by Global Surveillance Research Center (GSRC) program funded by the Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungsun Park.

Appendices

Appendix A

$$\begin{aligned} A_{11}= & {} \left\{ {2V_{11} Q_{11, d} \cos ^{4}\phi +2V_{21} Q_{22, d} \sin ^{4}\phi } \right. \nonumber \\&\quad \left. {+2\left[ {\left( {V_{11} +V_{21} } \right) Q_{12, d} +4V_{31} Q_{66, d} } \right] \cos ^{2}\phi \sin ^{2}\phi } \right\} H, \end{aligned}$$
(26.1)
$$\begin{aligned} A_{12}= & {} \left[ {2(V_{11} Q_{11, d} +V_{21} Q_{22, d} -4V_{31} Q_{66, d} )\cos ^{2}\phi \sin ^{2}\phi } \right. \nonumber \\&\quad +2Q_{12, d} (V_{11} \cos ^{4}\phi +V_{21} \sin ^{4}\phi ) \left. {+Q_{12, t} V_{13} } \right] H, \end{aligned}$$
(26.2)
$$\begin{aligned} A_{21}= & {} A_{12} , \end{aligned}$$
(26.3)
$$\begin{aligned} A_{22}= & {} \left\{ {2V_{11} Q_{11, d} \sin ^{4}\phi +2V_{21} Q_{22, d} \cos ^{4}\phi +V_{13} Q_{11, t} } \right. \nonumber \\&\quad \left. {+2\left[ {\left( {V_{11} +V_{21} } \right) Q_{12, d} +4V_{31} Q_{66, d} } \right] \cos ^{2}\phi \sin ^{2}\phi } \right\} H, \end{aligned}$$
(26.4)
$$\begin{aligned} A_{66}= & {} \left\{ {2V_{31} Q_{66, d} \left( {\cos ^{4}\phi +\sin ^{4}\phi } \right) +V_{33} Q_{66, t} } \right. \nonumber \\&\quad 2\left[ {V_{11} Q_{11, d} +V_{21} Q_{22, d} -\left( {V_{11} +V_{21} } \right) Q_{12, d} } \right. \nonumber \\&\quad \left. {\left. {-2V_{31} Q_{66, d} } \right] \cos ^{2}\phi \sin ^{2}\phi } \right\} H, \end{aligned}$$
(26.5)
$$\begin{aligned} A_{16}= & {} A_{26} =A_{61} =A_{62} =0. \end{aligned}$$
(26.6)

Appendix B

$$\begin{aligned} P_{11}= & {} \frac{144D_{11} L_b }{5L_a ^{3}}, \end{aligned}$$
(46.1)
$$\begin{aligned} P_{13}= & {} \frac{104D_{11} L_b }{L_a ^{3}}\quad , \end{aligned}$$
(46.2)
$$\begin{aligned} P_{12}= & {} P_{14} =P_{15} =0, \end{aligned}$$
(46.3)
$$\begin{aligned} P_{22}= & {} \frac{48D_{11} L_b }{5L_a ^{3}}+\frac{1152D_{66} }{7L_a L_b }, \end{aligned}$$
(46.4)
$$\begin{aligned} P_{24}= & {} -\frac{392D_{11} L_b }{L_a ^{3}}-\frac{31592D_{66} }{7L_a L_b }, \end{aligned}$$
(46.5)
$$\begin{aligned} P_{21}= & {} P_{23} =P_{25} =0, \end{aligned}$$
(46.6)
$$\begin{aligned} P_{31}= & {} P_{13} , \end{aligned}$$
(46.7)
$$\begin{aligned} P_{33}= & {} \frac{2640D_{11} L_b }{7L_a ^{3}}, \end{aligned}$$
(46.8)
$$\begin{aligned} P_{32}= & {} P_{34} =P_{35} =0, \end{aligned}$$
(46.9)
$$\begin{aligned} P_{42}= & {} P_{24} , \end{aligned}$$
(46.10)
$$\begin{aligned} P_{44}= & {} \frac{880D_{11} L_b }{7L_a ^{3}}+\frac{141040D_{66} }{63L_a L_b }, \end{aligned}$$
(46.11)
$$\begin{aligned} P_{41}= & {} P_{43} =P_{45} =0, \end{aligned}$$
(46.12)
$$\begin{aligned} P_{51}= & {} P_{52} =P_{53} =P_{54} =0, \end{aligned}$$
(46.13)
$$\begin{aligned} P_{55}= & {} k_\mathrm{ts}, \end{aligned}$$
(46.14)
$$\begin{aligned} Q_{11}= & {} \frac{104L_a L_b H\rho _\mathrm{eq} }{45}, \end{aligned}$$
(47.1)
$$\begin{aligned} Q_{13}= & {} \frac{2644L_a L_b H\rho _\mathrm{eq} }{315}, \end{aligned}$$
(47.2)
$$\begin{aligned} Q_{15}= & {} \frac{13L_a ^{2}L_b H\rho _\mathrm{eq} }{15}, \end{aligned}$$
(47.3)
$$\begin{aligned} Q_{12}= & {} Q_{14} =0, \end{aligned}$$
(47.4)
$$\begin{aligned} Q_{22}= & {} \frac{104L_a ^{2}L_b H\rho _\mathrm{eq} }{135}, \end{aligned}$$
(47.5)
$$\begin{aligned} Q_{24}= & {} \frac{2644L_a L_b H\rho _\mathrm{eq} }{945}, \end{aligned}$$
(47.6)
$$\begin{aligned} Q_{21}= & {} Q_{23} =Q_{25} =0, \end{aligned}$$
(47.7)
$$\begin{aligned} Q_{31}= & {} Q_{13} , \end{aligned}$$
(47.8)
$$\begin{aligned} Q_{33}= & {} \frac{21128L_a L_b H\rho _\mathrm{eq} }{693}, \end{aligned}$$
(47.9)
$$\begin{aligned} Q_{35}= & {} \frac{22L_a ^{2}L_b H\rho _\mathrm{eq} }{7}, \end{aligned}$$
(47.10)
$$\begin{aligned} Q_{32}= & {} Q_{34} =0, \end{aligned}$$
(47.11)
$$\begin{aligned} Q_{42}= & {} Q_{24} , \end{aligned}$$
(47.12)
$$\begin{aligned} Q_{44}= & {} \frac{21128L_a L_b H\rho _\mathrm{eq} }{2079}, \end{aligned}$$
(47.13)
$$\begin{aligned} Q_{41}= & {} Q_{43} =Q_{45} =0, \end{aligned}$$
(47.14)
$$\begin{aligned} Q_{51}= & {} Q_{15} , \end{aligned}$$
(47.15)
$$\begin{aligned} Q_{53}= & {} Q_{35} , \end{aligned}$$
(47.16)
$$\begin{aligned} Q_{55}= & {} \frac{L_a ^{3}L_b H\rho _\mathrm{eq} }{3}, \end{aligned}$$
(47.17)
$$\begin{aligned} Q_{52}= & {} Q_{54}. \end{aligned}$$
(47.18)

Appendix C

$$\begin{aligned} R_{11}= & {} \frac{9D_{11} L_b \left( {24D_{11} ^{2}-6D_{11} L_a k_\mathrm{ts} +L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{5L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}\quad , \end{aligned}$$
(60.1)
$$\begin{aligned} R_{12}= & {} \frac{D_{11} L_b \left( {108D_{11} ^{2}-30D_{11} L_a k_\mathrm{ts} +5L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.2)
$$\begin{aligned} R_{13}= & {} \frac{6D_{11} L_b \left( {225D_{11} ^{2}-66D_{11} L_a k_\mathrm{ts} +11L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{7L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.3)
$$\begin{aligned} R_{14}= & {} \frac{3D_{11} L_b \left( {99D_{11} ^{2}-30D_{11} L_a k_\mathrm{ts} +5L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.4)
$$\begin{aligned} R_{21}= & {} R_{12} , \end{aligned}$$
(60.5)
$$\begin{aligned} R_{22}= & {} \frac{3D_{11} L_b \left( {640D_{11} ^{2}-198D_{11} L_a k_\mathrm{ts} +33L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{7L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.6)
$$\begin{aligned} R_{23}= & {} \frac{9D_{11} L_b \left( {55D_{11} ^{2}-18D_{11} L_a k_\mathrm{ts} +3L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.7)
$$\begin{aligned} R_{24}= & {} \frac{2D_{11} L_b \left( {1152D_{11} ^{2}-390D_{11} L_a k_\mathrm{ts} +65L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{3L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.8)
$$\begin{aligned} R_{31}= & {} R_{13} , \end{aligned}$$
(60.9)
$$\begin{aligned} R_{32}= & {} R_{23}, \end{aligned}$$
(60.10)
$$\begin{aligned} R_{33}= & {} \frac{4D_{11} L_b \left( {225D_{11} ^{2}-78D_{11} L_a k_\mathrm{ts} +13L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.11)
$$\begin{aligned} R_{34}= & {} \frac{12D_{11} L_b \left( {117D_{11} ^{2}-42D_{11} L_a k_\mathrm{ts} +7L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.12)
$$\begin{aligned} R_{41}= & {} R_{14}, \end{aligned}$$
(60.13)
$$\begin{aligned} R_{42}= & {} R_{24}, \end{aligned}$$
(60.14)
$$\begin{aligned} R_{43}= & {} R_{34}, \end{aligned}$$
(60.15)
$$\begin{aligned} R_{44}= & {} \frac{12D_{11} L_b \left( {2016D_{11} ^{2}-750D_{11} L_a k_\mathrm{ts} +125L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{11L_a ^{3}\left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(60.16)
$$\begin{aligned} S_{11}= & {} \frac{3L_b \left( {51D_{11} ^{2}-13D_{11} L_a k_\mathrm{ts} +L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{35L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.1)
$$\begin{aligned} S_{12}= & {} \frac{L_b \left( {765D_{11} ^{2}-208D_{11} L_a k_\mathrm{ts} +17L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{70L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.2)
$$\begin{aligned} S_{13}= & {} \frac{L_b \left( {16380D_{11} ^{2}-4611D_{11} L_a k_\mathrm{ts} +389L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{840L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.3)
$$\begin{aligned} S_{14}= & {} \frac{L_b \left( {3600D_{11} ^{2}-1035D_{11} L_a k_\mathrm{ts} +89L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{120L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.4)
$$\begin{aligned} S_{21}= & {} S_{12} , \end{aligned}$$
(61.5)
$$\begin{aligned} S_{22}= & {} \frac{L_b \left( {8640D_{11} ^{2}-2505D_{11} L_a k_\mathrm{ts} +218L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{315L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.6)
$$\begin{aligned} S_{23}= & {} \frac{L_b \left( {13740D_{11} ^{2}-4125D_{11} L_a k_\mathrm{ts} +371L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{280L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.7)
$$\begin{aligned} S_{24}= & {} \frac{L_b \left( {698880D_{11} ^{2}-214339D_{11} L_a k_\mathrm{ts} +19665L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{9240L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.8)
$$\begin{aligned} S_{31}= & {} S_{13} , \end{aligned}$$
(61.9)
$$\begin{aligned} S_{32}= & {} S_{23} , \end{aligned}$$
(61.10)
$$\begin{aligned} S_{33}= & {} \frac{3L_b \left( {22575D_{11} ^{2}-7020D_{11} L_a k_\mathrm{ts} +653L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{770L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.11)
$$\begin{aligned} S_{34}= & {} \frac{L_b \left( {57015D_{11} ^{2}-18117D_{11} L_a k_\mathrm{ts} +1720L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{420L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}, \end{aligned}$$
(61.12)
$$\begin{aligned} S_{41}= & {} S_{14} , \end{aligned}$$
(61.13)
$$\begin{aligned} S_{42}= & {} S_{24} , \end{aligned}$$
(61.14)
$$\begin{aligned} S_{43}= & {} S_{34} , \end{aligned}$$
(61.15)
$$\begin{aligned} S_{44}= & {} \frac{L_b \left( {81792D_{11} ^{2}-26565D_{11} L_a k_\mathrm{ts} +2575L_a ^{2}k_\mathrm{ts} ^{2}} \right) }{390L_a \left( {3D_{11} -L_a k_\mathrm{ts} } \right) ^{2}}. \end{aligned}$$
(61.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, P., Kim, H. et al. Optimal Design of a Composite Lattice Rectangular Plate for Solar Panels of a High-Agility Satellite. Int. J. Aeronaut. Space Sci. 19, 762–775 (2018). https://doi.org/10.1007/s42405-018-0050-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-018-0050-2

Keywords

Navigation