Skip to main content

Advertisement

Log in

Biosurfactants: the next generation biomolecules for diverse applications

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Biosurfactants are surface-active biomolecules, produced by various microbes and play an imperative role in different fields. A lot of research work is going on including media optimization strategies by using the low-cost substrates for their production in a promising amount. The commercial uses of biosurfactants in various industries like food, cosmetics, pharmaceutical, environmental sectors, oil recovery, and interestingly in the agricultural sector are being documented. Though, it is very essential to note that more information and full-scale studies are required to predict the model of biosurfactant functions and their behavior in different formulations and processes. The research highlighting their potential in human wellbeing and environmental sustainability is necessary to initiate attempts to make these biomolecules more practical for large scale and commercial uses. Moreover, it is also very important to make them easily available, economically sustainable, and product-effective. This review deliberates the distinctive features of biosurfactants and also discusses future challenges and research opportunities so as to use them in different ways.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcýa F, Manresa A (2002) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Google Scholar 

  • Açıkel YS (2011) Use of biosurfactants in the removal of heavy metal ions from soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Bio-management of metal contaminated soils. Springer, Dordrecht, pp 183–223

    Google Scholar 

  • Adamu CI, Nganje TN, Edet A (2015) Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State Southeastern Nigeria. Environ Nanotechnol Monitoring Manage 3:10–21. https://doi.org/10.1016/j.enmm.2014.11.001

    Article  Google Scholar 

  • Akbari S, Abdurahman NH, Yunus MR, Fayaz F, Alara OR (2018) Biosurfactants-a new frontier for social and environmental safety: a mini review. Biotechnol Res Innova 2:81–90. https://doi.org/10.1016/j.biori.2018.09.001

    Article  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-Sulaimani A-M, HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146

    CAS  Google Scholar 

  • Al-Ghailani T, Al-Wahaibi YM, Joshi SJ, Al-Bahry SN, Elshafie AE, Al-Bemani AS (2018) Alkaline-Biosurfactant-Biopolymer process and its potential for enhancing oil recovery in Omani Oil Field. SPE-190380-MSPublisher Society of Petroleum Engineers. https://doi.org/10.2118/190380-MS

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and Its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333

    CAS  Google Scholar 

  • Amani H (2017) Synergistic effect of biosurfactant and nanoparticle mixture on microbial enhanced oil recovery. J Surfact Deterg 20:589–597

    CAS  Google Scholar 

  • Andrade RFS, Silva TAL, Ribeaux DR, Rodriguez DM, Souza AF, Lima MAB, Lima RA, Silva CAA, Campos-Takaki GM (2019) Promising biosurfactant produced by Cunninghamella echinulata ucp 1299 using renewable resources and its application in cotton fabric cleaning process. Adv Mater Sci Eng 624573:12. https://doi.org/10.1155/2018/1624573

    Article  CAS  Google Scholar 

  • Araújo HWC, Andrade RFS, Montero-Rodríguez D, Rubio-Ribeaux D, Silva CA, Campos-Takaki GM (2019) Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Fact 18(1):2. https://doi.org/10.1186/s12934-018-1046-0

    Article  Google Scholar 

  • Asçıa Y, Nurbas M, Açıkel YS (2010) Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactants. J Environ Manage 91:724–731

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2018) Metal (loid) bioremediation: strategies employed by microbial polymers. Sustainability 10:3028. https://doi.org/10.3390/su10093028

    Article  CAS  Google Scholar 

  • Balakrishnana S, Kavitha D, Muthusamy S, Senthil Kumar B (2016) Screening of pesticide degrading and biosurfactant producing bacteria from chlorpyrifos contaminated soil

  • Banat IM, Franzett A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. J Appl Microbiol Biotechnol 87:427–444

    CAS  Google Scholar 

  • Batista Durval I, Resende A, Ostendorf T, Oliveira KGO, Luna J, Rufino R, Sarubbo L (2019) Application of Bacillus cereus Ucp 1615 biosurfactant for increase dispersion and removal of motor oil from contaminated seawater. Chem Eng Transac 74:319–324

    Google Scholar 

  • Beebe JL, Umbreit WW (1971) Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol 108(1):612–614

    CAS  Google Scholar 

  • Bezerra KGO, Rufino RD, Luna JM, Sarubbo LA (2018) Saponins and microbial biosurfactants: potential raw materials for the formulation of cosmetics. Biotechnol Prog 34(6):1482–1493. https://doi.org/10.1002/btpr.2682

    Article  CAS  Google Scholar 

  • Bezerra KGO, Durvala IJB, Silva IA, Almeida FCG, Melob YTF, Rufino RD, Sarubbo LA (2020) Emulsifying capacity of biosurfactants from Chenopodium quinoa and Pseudomonas aeruginosa UCP 0992 with focus of application in the cosmetic industry. Chem Eng Trans 79:211–216

    Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    CAS  Google Scholar 

  • Bhuyan-Pawar S, Yeole RP, Sanam VP, Bashetti SP, Mujumdar SS (2015) Biosurfactant mediated plant growth promotion in soils amended with polyaromatic hydrocarbons. Int J Curr Microbiol App Sci 2:343–356

    Google Scholar 

  • Bogaert IV, Soetaert W (2011) Sophorolipids. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications, vol 20. Springer, Berlin, pp 179–210

    Google Scholar 

  • Bonnichsen L, Bygvraa Svenningsen N, Rybtke M, de Bruijn I, Raaijmakers JM, Tolker-Nielsen T, Nybroe O (2015) Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiol 161(12):2289–2297. https://doi.org/10.1099/mic.0.000191

    Article  CAS  Google Scholar 

  • Boruah B, Gogoi M (2013) Plant based natural surfactants. Asian J Home Sci 8(2):759–762

    Google Scholar 

  • Camargo FP, de Menezes AJ, Tonello PS, Santos ACAD, Duarte ICS (2018) Characterization of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiol Lett 365(10):fny098. https://doi.org/10.1093/femsle/fny098

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2004) Potential applications of microbial surfactants in biomedical sciences. J Trends Biotechnol 22:142–146

    Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeter Biodegrad 62:274–280

    CAS  Google Scholar 

  • Campos JM, Stamford TCM, Sarubbo LA, de Luna JM, Rufino JM, Bamat IM (2013) Microbial biosurfactants as additives for food industries. 29(5): 1097–1108

  • Carolin CF, Kumar PS, Joshiba JG, Ramamurthy R, Varjani JS (2020) Bioremediation of 2,4-diaminotoluene in aqueous solution enhanced by lipopeptide biosurfactant production from bacterial strains. J Env Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001740

    Article  Google Scholar 

  • Chakrabharti D (2012) Production of biosurfactants by cheap and low coast substrates. Thesis. IIT Rurkee

  • Chen WJ, Hsiao LC, Chen KKY (2008) Metal desorption from copper (II)/nickel (II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochem 43:488–498

    Google Scholar 

  • Chen WC, Junag RS, Wei YH (2015) Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 103:158–169

    CAS  Google Scholar 

  • Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H (2017) Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 101:8309–8319. https://doi.org/10.1007/s00253-017-8554-4

    Article  CAS  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:137. https://doi.org/10.1186/s12934-017-0753-2

    Article  CAS  Google Scholar 

  • Christova N, Kabaivanova L, Nacheva L, Petrov P, Stoineva I (2019) Biodegradation of crude oil hydrocarbons by a newly isolated biosurfactant producing strain. Biotechnol Biotechnological Equip 33(1):863–872

    CAS  Google Scholar 

  • Coronel-Leon J, Marques AM, Bastida J, Manresa A (2015) Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J App Microbiol 120:99–111

    Google Scholar 

  • Cortés-Sánchez A, De J (2020) Surfactants of microbial origin and its application in foods. Sci Res Essays 15(1):11–17

    Google Scholar 

  • Cui CZ, Zeng C, Wan X, Chen D, Zhang J-Y, Shen P (2008) Effect of rhamnolipids in degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B. World J Microbiol Biotechnol 18(1):63–66

    CAS  Google Scholar 

  • Daes J, Maeyer KD, Pauwelyn E, Hofte M (2010) Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98(7):1339–1345. https://doi.org/10.1016/j.biortech.2006.05.032

    Article  CAS  Google Scholar 

  • Das AJ, Kumar R (2019) Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Bioresour Technol 260(233–240):100450

    Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674

    CAS  Google Scholar 

  • De Almeida DG, Soares Da Silva RCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718. https://doi.org/10.3389/fmicb.2016.01718

    Article  Google Scholar 

  • De Oliveira MR, Magri A, Baldo C, Camilios-Neto D, Minucelli T, Celligoi MAPC (2015) Review: sophorolipids a promising biosurfactant and it’s applications. Int J Adv Biotechnol Res 6(2):161–174

    Google Scholar 

  • Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Ho¨fte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbil Mol Biol Rev 61(1):47–64

    CAS  Google Scholar 

  • Drakontis CE, Amin S (2020) Biosurfactants: formulations, properties, and applications. Curr Opinion Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2020.03.013

    Article  Google Scholar 

  • Dunlap CA, Bowman MJ, Rooney AP (2019) Iturinic lipopeptide diversity in the Bacillus subtilis species group—important antifungals for plant disease biocontrol applications. Front Microbiol 10:1794. https://doi.org/10.3389/fmicb.2019.01794

    Article  Google Scholar 

  • Durval EJB, Resende AHM, Figueiredo MA, Luna JM, Rufino RD, Sarubbo LA (2018) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfact Deterg 22(2):349–363. https://doi.org/10.1002/jsde.12218

    Article  CAS  Google Scholar 

  • Edwards KR, Lepo JE, Lewis MA (2003) Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull 46:1309–1316

    CAS  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324. https://doi.org/10.3389/fmicb.2015.01324

    Article  Google Scholar 

  • El-Sheshtawy HS, Doheim MM (2014) Selection of Pseudomonas aeruginosa for Biosurfactant production and studies of its antimicrobial activity. Egyptian J Petrol 23:1–6

    Google Scholar 

  • Eswari JS, Dhagat S, Mishra P (2018) Biosurfactant assisted silver nanoparticle synthesis: a critical analysis of its drug design aspects. Adv Nat Sci Nanosci Nanotechnol 9(4):045007. https://doi.org/10.1088/2043-6254/aaec0e

    Article  CAS  Google Scholar 

  • Fan H, Ru J, Zhang Y, Wang Q, Li Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    CAS  Google Scholar 

  • Fei D, Zhou GW, Yu ZQ, Gang HZ, Liu JF, Yang SZ, Ye RQ, Mu BZ (2019) Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations. J Surfact Deter 23(1):109–118

    Google Scholar 

  • Felixa AKN, Martinsa JL, Almeidab JGL, Giroa ME, Cavalcantea KF, Meloc VMM, Pessoab ODL, Rochaa MV, Gonçalvesa LRB, Aguiara RSDS (2019) Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil contaminated soil. Colloids Surfaces B: Biointerfaces 175:256–263

    Google Scholar 

  • Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB (2019) Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7(11):581. https://doi.org/10.3390/microorganisms7110581

    Article  CAS  Google Scholar 

  • Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM (2015) Potential therapeutic applications of microbial surface-active compounds. Bioengineering 2:144–162

    CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. European J Lipid Sci Technol 112(6):617–627

    CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Fracchia L, Hamme JV, Gkorezis P, Marchant R, Banat, IM (2014) Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In: N. Kosaric, Sukan FV (Eds.) Biosurfactants: production and utilization-processes, Technologies and Economics, Taylor & Francis, pp 361–369

  • Freitas De, Ferreira J, Vieira EA, Nitschke M (2019) The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int 116:737–744

    Google Scholar 

  • Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956

    CAS  Google Scholar 

  • Galdino RB, Monteiro DSM, Isabel SPM, Morais MH, Batista DI, Medeiros CGJ, Sarubbo L (2019) Production and optimization of the extraction conditions of a biosurfactant of Candida utilis Ufpeda1009 with potential of application in the food industry. Chemi Engi Transac 74:1477–1482. https://doi.org/10.3303/CET1974247

    Article  Google Scholar 

  • Gandhi NR, Skebba VLP (2007) Rhamnolipid compositions and related methods of use. U.S. Patent No WO 2007095258 A2. Washington, DC: U.S. Patent and Trademark Office.

  • Garay LA, Sitepu IR, Cajka T, Xu J, The HE, German JB, Pan Z, Dungan SR, Block DE, Boundy-Mills KL (2018) Extracellular fungal polyol lipids: a new class of potential high value lipids. Biotechnol Adv 36(2):397–414. https://doi.org/10.1016/j.biotechadv.2018.01.003

    Article  CAS  Google Scholar 

  • Garg M, Priyanka CM (2018) Isolation, characterization and antibacterial effect of biosurfactant from Candida parapsilosis. Biotechnol Rep 18:e00251. https://doi.org/10.1016/j.btre.2018.e00251

    Article  Google Scholar 

  • Gautam KK, Tyagi VK (2006) Microbial surfactants: a review. J Oleo Sci 55:155–166

    CAS  Google Scholar 

  • Geetha SJ, Banat IM, Joshi SJ (2018) Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis Agri Biotechnol 14:23–32

    Google Scholar 

  • Ghasemi A, Moosavi-Nasab M, Setoodeh P (2019) Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different carbon sources: strain screening followed by product characterization. Sci Rep 9:5287. https://doi.org/10.1038/s41598-019-41589-0

    Article  CAS  Google Scholar 

  • Global Market Insights, Inc (2019) https://www.prnewswire.com/news-releases/biosurfactants-market-value-worth-2-4-billion-by-2025-global-market-insights-inc-300968770.html

  • Golshan M, Rezaei Kalantary R, Nasseri S, Farzadkia M, Esrafili A, Gharibzadeh F, Takanlu LK, Alvani V (2016) Phenanthrene removal from liquid medium with emphasis on production of biosurfactant. Water Sci Technol 74(12):2879–2888. https://doi.org/10.2166/wst.2016.450

    Article  CAS  Google Scholar 

  • Gomaa EZ (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol 59(6):425–436. https://doi.org/10.2323/jgam.59.425

    Article  CAS  Google Scholar 

  • Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG8123141 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Cent 43:69. https://doi.org/10.1186/s42269-019-0088-8

    Article  Google Scholar 

  • Guan R, Yuan X, Wu Z, Wang H, Jiang L, Li Y, Zeng G (2017) Functionality of surfactants in waste-activated sludgetreatment: a review. Sci Total Environ 609:1433–1442

    CAS  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015a) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6(6):59. https://doi.org/10.3389/fmicb.2015.00059

    Article  Google Scholar 

  • Gudiña EJ, Fernandes EC, Teixeira JA, Rodrigues LR (2015b) Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv 5:90960–90968

    Google Scholar 

  • Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G (2019) Eminence of microbial products in cosmetic industry. Nat Prod Bioprospect 9(4):267–278. https://doi.org/10.1007/s13659-019-0215-0

    Article  CAS  Google Scholar 

  • Gusiatin ZM, Radziemska M, Żochowska A (2019) Sequential soil washing with mixed biosurfactants is suitable for simultaneous removal of multi-metals from soils with different properties, pollution levels and ages. Environ Earth Sci 78:529. https://doi.org/10.1007/s12665-019-8542-3

    Article  CAS  Google Scholar 

  • Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Applied Microbiol Biotechnol 54(4):451–460. https://doi.org/10.1007/s002530000438.PMID11092618

    Article  CAS  Google Scholar 

  • Hajfarajollah H, Mehvari S, Habibian M, Mokhtarani B, Noghabi KA (2015) Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Adv 5:33089–33097

    CAS  Google Scholar 

  • Hartmann A, Murauer A, Ganzera M (2017) Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. J Pharm Biomed Anal. 10(138):153–157. https://doi.org/10.1016/j.jpba.2017.01.053Get

    Article  Google Scholar 

  • Hassen W, Neifar M, Cherif H, Najjari N, Chouchane H, Driouich RC, Salah A, Naili F, Mosbah A, Souissi Y, Raddadi N, Ouzari HI, Fava F, Cherif A (2018) Pseudomonas rhizophila S211, a new plant growth promoting rhizobacterium with potential in pesticide bioremediation. Front Microbiol 9:34. https://doi.org/10.3389/fmicb.2018.00034

    Article  Google Scholar 

  • Hatha AAM, Edward G, Rahman KSMP (2007) Microbial biosurfactants-review. J Mar Atmos Res 3:1–17

    Google Scholar 

  • Heidary M, Khosravi AD, Khoshnood S, Nasiri MJ, Soleimani S, Goudarzi M (2018) daptomycin. J Antimicrob Chemother 73(1):1–11

    CAS  Google Scholar 

  • Helmy Q, Kardena E, Funamizu N, Wisjnuprapto W (2011) Strategies toward commercial scale of biosurfactant production as potential substitute for its chemically counterparts. Int J Biotechnol 12:66–86

    Google Scholar 

  • Henkel M, Hausmann R (2019) Diversity and classification of microbial surfactants. In: Hayes DG, Solaiman DKY, Ashby RD (eds) Biobased surfactants, IInd edn. Academic Press and AOCS Press, Cambridge, pp 41–63. https://doi.org/10.1016/C2016-0-03179-0

    Chapter  Google Scholar 

  • Hippolyte MT, Augustin M, Hervé TM, Robert N, Devappa S (2018) Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresour Bioprocess 5:48. https://doi.org/10.1186/s40643-018-0234-4

    Article  Google Scholar 

  • Hisham NHMB, Ibrahim MF, Ramli N, Abd-Aziz S (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. hip3 for heavy metals removal. Molecules 24:2617. https://doi.org/10.3390/molecules24142617

    Article  CAS  Google Scholar 

  • Hu Y, Ju LK (2001) Purification of lactonic sophorolipids by crystallization. J Biotechnol 87:263–272

    CAS  Google Scholar 

  • Hu X, Cheng T, Liu J (2018) A novel Serratia sp. ZS6 isolate derived from petroleum sludge secretes biosurfactant and lipase in medium with olive oil as sole carbon source. AMB Expr 8:165–171. https://doi.org/10.1186/s13568-018-0698-9

    Article  CAS  Google Scholar 

  • Huang W, Lang Y, Abdul H, Lei Y, Gan L, Yang X (2018) Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomed 13:1723–1736. https://doi.org/10.2147/IJN.S157368

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb Technol 38:220–222. https://doi.org/10.1016/j.enzmictec.2005.06.007

    Article  CAS  Google Scholar 

  • Janek T, Krasowska A, Czyżnikowska Ż, Łukaszewicz M (2018) Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an Experimental and computational approach. Front Microbiol 9:2441. https://doi.org/10.3389/fmicb.2018.02441

    Article  Google Scholar 

  • Jezierska S, Claus S, Van Bogaert I (2018) Yeast glycolipid biosurfactants. FEBS Lett 592:1312–1329

    CAS  Google Scholar 

  • Jha SS, Joshi SJ, Geetha SJ (2016) Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol 47(4):955–964. https://doi.org/10.1016/j.bjm.2016.07.006

    Article  CAS  Google Scholar 

  • Ji F, Li L, Ma S, Wang J, Bao Y (2016) Production of rhamnolipids with a high specificity by Pseudomonas aeruginosa M408 isolated from petroleum-contaminated soil using olive oil as sole carbon source. Ann Microbiol 66:1145–1156

    CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 30(184):109607

    Google Scholar 

  • Jonathan R, Marques A (2017) Interaction of the lipopeptide biosurfactant lichenysin with phosphatidylcholine model membranes. J American Chem Soc 33(38):9997–10005. https://doi.org/10.1021/acs.langmuir.7b01827

    Article  CAS  Google Scholar 

  • Jorfi S, Rezaee A, Jaafarzadeh NA, Esrafili A, Akbari H, Ali GA (2014) Bioremediation of pyrene-contaminated soils using biosurfactant. Jentashapir J Health Res 5:e23228. https://doi.org/10.17795/jjhr-23228

    Article  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99(1):195–199

    CAS  Google Scholar 

  • Junior RB, Meira HM, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2019) Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation 30(4):215–233. https://doi.org/10.1007/s10532-018-9833-1

    Article  CAS  Google Scholar 

  • Kaeppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    Google Scholar 

  • Kalyani ALT, Devarakonda R, Sankar GG (2016) Anti-adhesive activity of the biosurfactant rhamnolipid isolated from Streptomyces sp. J Global Trends Pharma Sci 7(4):3536–3543

    CAS  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790

    CAS  Google Scholar 

  • Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmetic Sci 32:1–8

    CAS  Google Scholar 

  • Kanna R (2018) Production of biosurfactant using crude palm oil by bacteria Pseudomonas putida MTCC 2467 and its application in improved oil recovery. Int J Civil Eng Technol 9:2132–2138

    Google Scholar 

  • Karlapudi AP, Venkataswaralu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3):241–249

    Google Scholar 

  • Kaskatepe B, Yildiz S (2016) Rhamnolipid biosurfactants produced by Pseudomonas species. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016160786

    Article  Google Scholar 

  • Kavitha V, Mandal AB, Gnanamani A (2014) Microbial biosurfactant mediated removal and/or solubilization of crude oil contamination from soil and aqueous phase: an approach with Bacillus licheniformis MTCC 5514. Int Biodeterior Biodegrad 94:24–30. https://doi.org/10.1016/j.ibiod.2014.04.028

    Article  CAS  Google Scholar 

  • Kavitha D, Sureshkumar M, Senthilkumar B (2016) Screening of pesticide degrading and biosurfactant producing bacteria from chlorpyrifos contaminated soil. Int J Pharma Bio Sci 7(3B):525–532

    CAS  Google Scholar 

  • Kesting W, Tummuscheit M, Schacht H, Schollmeyer E (1996) Ecological washing of textiles with microbial surfactants. In: Jacobasch HJ (ed) Interfaces, surfactants and colloids in engineering progress in colloid & polymer science. Springer, Steinkopff, pp 125–136

    Google Scholar 

  • Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabic KA, Manteghian M (2019) Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Adv 9:7932–7947

    CAS  Google Scholar 

  • Kim CH, Lee DW, Heo YM, Lee H, Yoo Y, Kim GH, Kim JJ (2019) Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians. Water Environ Res 91(8):739–747. https://doi.org/10.1002/wer.1103

    Article  CAS  Google Scholar 

  • Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N, Selvin J (2017) production of lipopeptide biosurfactant by a marine nesterenkonia sp. and its application in food industry. Front Microbiol 8:1138. https://doi.org/10.3389/fmicb.2017.01138

    Article  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00845

    Article  Google Scholar 

  • Krishnaswamy M, Subbuchettiar G, Ravi TK, Panchaksharam S (2008) Biosurfactants properties, commercial production and application. J Current Science 94:736–747

    Google Scholar 

  • Kubicki S, Bollinger A, Katzke N, Jaeger KE, Loeschcke A, Thies S (2019a) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. J Mar Drugs. https://doi.org/10.3390/md17070408

    Article  Google Scholar 

  • Kubicki S, Bollinger A, Katzke N, Jaeger KE, Loeschcke A, Thies S (2019b) Marine Biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar Drugs 17:408. https://doi.org/10.3390/md17070408

    Article  CAS  Google Scholar 

  • Kumar R, Das AJ (2018) Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresor Technol 260:233–240

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N Biotechnol 32(6):559–568. https://doi.org/10.1016/j.nbt.2015.03.006

    Article  CAS  Google Scholar 

  • Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    CAS  Google Scholar 

  • Lake LW, Johns RT, Rossen WR, Pope GA (2014) Fundamentals of enhanced oil recovery; Society of petroleum engineers. ISBN: 978-1-61399-328-6

  • Lal S, Ratna S, Said OB, Kumar R (2018) Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263

    Google Scholar 

  • Li J, Deng M, Wang Y, Chen W (2016) Production and characteristics of biosurfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. Int Biodeterior Biodegrad 112:72–79

    CAS  Google Scholar 

  • Li X, Qian P (2017) Identification of an exposurerisk to heavy metals from pharmaceutical-grade rubber stoppers. J Food Drug Analysis 25(3):723–730. https://doi.org/10.1016/j.jfda.2016.07.008

    Article  CAS  Google Scholar 

  • Li Y, Héloir MC, Zhang X, Geissler M, Trouvelot S, Jacquens L, Henkel M, Su X, Fang X, Wang Q, Adrian M (2019a) Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol Plant Pathol 20(8):1037–1050

    CAS  Google Scholar 

  • Li Z, Zhang Y, Lin J, Wang W, Li S (2019b) High yield di-rhamnolipid production by pseudomonas aeruginosa ym4 and its potential application in MEOR. Molecules 24:1433–1444. https://doi.org/10.3390/molecules24071433

    Article  CAS  Google Scholar 

  • Liang X, Shi R, Radosevich M, Zhao H, Zhang Y, Han S, Zhang Y (2017) Anaerobic lipopeptide biosurfactant production by an engineered bacterial strain for in situ microbial enhanced oil recovery. RSC Adv. 20667–20676

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837. https://doi.org/10.3390/ijms16034814

    Article  CAS  Google Scholar 

  • Liu Z, Li Z, Zhong H, Zeng G, Liang Y, Chen M, Shao B (2017) Recent advances in the environmental applications of biosurfactant saponins: a review. J Env Chem Engg 5(6):6030–6038. https://doi.org/10.1016/j.jece.2017.11.021

    Article  CAS  Google Scholar 

  • Liu Y, Zeng G, Zhong H, Wang Z, Liu Z, Cheng M, Liu G, Yang X, Liu S (2017) Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? J Hazard Mater 322(Pt B):394–401

    CAS  Google Scholar 

  • López-Prieto A, Martínez-Padrón H, Rodríguez-López L, Moldes AB, Cruz JM (2019) Isolation and characterization of a microorganism that produces biosurfactants in corn steep water. CyTA J Food 17(1):509–516. https://doi.org/10.1080/19476337.2019.1607909

    Article  CAS  Google Scholar 

  • Lu JK, Wang HM, Xu XR (2014) Applications of surfactin in cosmetic products. United States Patent Application Publication, Pub. No.: US 2016/0030322 A1

  • Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmetic Sci 31:255–261

    CAS  Google Scholar 

  • Luna JM, Santos Filho AS, Rufino RD, Sarubbo LA (2016) Production of biosurfactant from Candida bombicola URM 3718 for environmental applications. Chem Eng transact 49:583–588

    Google Scholar 

  • Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29(1):138–142

    Google Scholar 

  • Marcelino PRF, Peresa GFD, Terán-Hilares R, Pagnocca FC, Rosa CA, Lacerda TM, dos Santos JC, da Silva SS (2019) Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Ind Crops Product 129:212–223

    CAS  Google Scholar 

  • Marchut-Mikolajczyk O, Drożdżyński P, Pietrzyk D, Antczak T (2018) Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Microb Cell Fact 17:171. https://doi.org/10.1186/s12934-018-1015-1017

    Article  CAS  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. https://doi.org/10.1155/2015/473050

    Article  Google Scholar 

  • Meena KR, Sharma A, Kanwar SS (2017) Microbial lipopeptides and their medical applications. Ann Pharmacol Pharm 2(11):1111–1115

    Google Scholar 

  • Mehetre GT, Dastager SG, Dharne MS (2019) Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Sci Total Environ 679:52–60. https://doi.org/10.1016/j.scitotenv.2019.04.376

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2016) Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric 96(13):4310–4320. https://doi.org/10.1002/jsfa.7759

    Article  CAS  Google Scholar 

  • Morita T, Kawamura D, Morita N, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2013) Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96. J Oleo Sci 62:319–327

    CAS  Google Scholar 

  • Morya VK, Ahn C, Jeon S, Kim EK (2013) Medicinal and cosmetic potentials of sophorolipids. Mini-Rev Med Chem 13(12):1761–1768. https://doi.org/10.2174/13895575113139990002

    Article  CAS  Google Scholar 

  • Mostafa NA, Tayeb AM, Mohemad OA, Farouq R (2019) Biodegradation of petroleum oil effluents and production of biosurfactants: effect of initial oil concentration. J Surfactants Detergents 22(2):385–394

    CAS  Google Scholar 

  • Moya RI, Tsaousi K, Rudden M, Marchant R, Alameda EJ, Garcia RM, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236

    Google Scholar 

  • Muhammad IM, Mahsa SS (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10:285–291

    Google Scholar 

  • Mujumdar S, Joshi P, Karve N (2018) Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp. J Basic Microbiol 59(3):277–287. https://doi.org/10.1002/jobm.201800364

    Article  CAS  Google Scholar 

  • Mule AD, Bhathena ZP (2012) Control of Aspergillus parasiticum NCIM 898 infection in potato tubers using biosurfactant. Asian J Exp Sci 26:27–38

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Nair AM, Rebello S, Rishad KS, Asok AK, Jisha MS (2015) Biosurfactant facilitated biodegradation of quinalphos at high concentrations by Pseudomonas aeruginosa Q10. Soil Sediment Contamination: Inte J 24(5):542–553

    CAS  Google Scholar 

  • Nair AS, Al-Bahry S, Sivakumar N (2019) Co-production of microbial lipids and biosurfactant from waste office paper hydrolysate using a novel strain Bacillus velezensis ASN1. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00420-6

    Article  Google Scholar 

  • Najafi AR, Roostaazad R, Soleimani M, Arabian D, Moazed MT, Rahimpour MR, Mazinani S (2015) Comparison and modification of models in production of biosurfactant for Paenibacillus alvei and Bacillus mycoides and Its Effect on MEOR Efficiency. J Petroleum Sci Eng 128:177–183

    CAS  Google Scholar 

  • Naughton PJ, Marchant R, Naughton V, Banat IM (2019) Microbial biosurfactants: current trends and applications inagricultural and biomedical industries. J Appl Microbiol 127:12–28

    CAS  Google Scholar 

  • Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W (2017) Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express 7:108. https://doi.org/10.1186/s13568-017-0363-8

    Article  CAS  Google Scholar 

  • Nerurkar AS (2010) Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv Exp Med Biol 672:304–315. https://doi.org/10.1007/978-1-4419-5979-9_23

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148. https://doi.org/10.3389/fpubh.2016.00148

    Article  Google Scholar 

  • Nikolova C, Gutierrez T (2019) use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: current state of knowledge, technological advances and future perspectives. Front Microbiol 10:2996. https://doi.org/10.3389/fmicb.2019.02996

    Article  Google Scholar 

  • Nikolova C, Gutierrtz T (2020) Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: current state of knowledge, technological advances and future perspectives. Front Microbiol 10:2996. https://doi.org/10.3389/fmicb.2019.02996

    Article  Google Scholar 

  • Nitschke M, Pastore GM (2003) Cassava flour wastewater as a substrate for biosurfactant production. App Biochem Biotechnol 105–108(1–3):295–301. https://doi.org/10.1385/ABAB:106:1-3:295

    Article  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. https://doi.org/10.1016/j.tifs.2007.01.002

    Article  CAS  Google Scholar 

  • Nitschke M, Silva SS (2018) Recent food applications of microbial surfactants. J Crit Rev Food Sci Nutr 58(4):631–638

    CAS  Google Scholar 

  • Ohadi M, Shahravan A, Dehghannoudeh N, Eslaminejad T, Banat IM, Dehghannoudeh G (2020) potential use of microbial surfactant in microemulsion drug delivery system: a systematic review. Drug Des Devel Ther 14:541–550

    CAS  Google Scholar 

  • Olasanmi IO, Thring RW (2018) The role of biosurfactants in the continued drive for environmental sustainability. Sustainability 10:4817. https://doi.org/10.3390/su10124817

    Article  Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, de França FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44(4):383–389

    CAS  Google Scholar 

  • Onaizi SA (2018) Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air–water interface. Eur Biophys J 47:631–640. https://doi.org/10.1007/s00249-018-1289-z

    Article  CAS  Google Scholar 

  • Ortega Ramirez CA, Kwan A, Li QX (2020) Rhamnolipids induced by glycerol enhance dibenzothiophene biodegradation in Burkholderia sp. C3 Eng 6(5):533–540

    Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska Z, Singh SC (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    CAS  Google Scholar 

  • Pasternak G, Askitosari TD, Rosenbaum MA (2020) Biosurfactants and synthetic surfactants in bioelectrochemical systems: a mini-review. Front Microbiol 11:358. https://doi.org/10.3389/fmicb.2020.00358

    Article  Google Scholar 

  • Patel MN, Gopinathan KP (1986) Lysozyme sensitive bioemulsier for immiscible organophosphorus pesticides. Appl Environ Microbiol 52:1224–1226

    CAS  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017a) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279. https://doi.org/10.3389/fmicb.2017.00279

    Article  Google Scholar 

  • Pérez-Armendáriz B, Cal-y-Mayor-Luna C, El-Kassis EG, Ortega-Martínez LD (2019) Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa. AMB Express 9:61. https://doi.org/10.1186/s13568-019-0784-7

    Article  CAS  Google Scholar 

  • Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Fact 19:145. https://doi.org/10.1186/s12934-020-01402-4

    Article  CAS  Google Scholar 

  • Pinto MI, Ribeirob BG, Guerrac JM, Rufinoa RD, Sarubbo LA, Santos VA, Lunaa JM (2018) Production in bioreactor, toxicity and stability of a low-cost biosurfactant. Chem Eng 64:595–600

    Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Rujiravanit R (2010) Rhamnolipid biosurfactants: production and their potential in environmental biotechnology. In: Sen R (ed) Biosurfactants. Adv. Experimental Medicine Biol. Springer, New York, pp 672:211–221

    Google Scholar 

  • Priscilla F, Amaral F, Alice M, Coelho Z, Isabel M, Marrucho J, João A, Coutinho P (2010) Biosurfactants from yeasts: characteristics, production and application. In: Ramkrishna S (ed) Biosurfactants. Landes Biosci Springer Science+Business Media, Berlin, pp 236–249

    Google Scholar 

  • Prive GG (2009) Lipopeptide detergents for membrane protein studies. Curr Opin Struc Biol 19(4):379–385

    CAS  Google Scholar 

  • Purwasena IA, Astuti DI, Syukron M, Amaniyah M, Sugai Y (2019) Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. J Petrol Sci Eng 183:106383

    CAS  Google Scholar 

  • Putra W, Hakiki F (2019) Microbial enhanced oil recovery: interfacial tension and biosurfactant-bacteria growth. J Petrol Explor Produc Technol 9:2353–2374. https://doi.org/10.1007/s13202-019-0635-8

    Article  CAS  Google Scholar 

  • Randhawa SKK, Rahman PKSM (2014) Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front Microbiol 5:454. https://doi.org/10.3389/fmicb.2014.00454

    Article  Google Scholar 

  • Rane AN, Baikar VV, Ravi Kumar V, Deopurkar RL (2017) Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol 8:492. https://doi.org/10.3389/fmicb.2017.00492

    Article  Google Scholar 

  • Ravindran A, Sajayan A, Priyadarshani GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermo-stable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00222

    Article  Google Scholar 

  • Rawat G, Kumar V (2020) Contributions of biosurfactants in environment: a green and clean approach. In: Gallegos ACF, Jasso RMR, Aguilar CN (eds) Bioprocessing of agri-food residues for production of bioproducts. Apple Academic Press, Palm Bay, pp 00–00

    Google Scholar 

  • Raza ZA, Rehman A, Hussain MT, Masood R, Haq A, Saddique MT, Javid A, Ahmad N (2014) Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric. Carbohyd Res 391:97–105

    CAS  Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983

    CAS  Google Scholar 

  • Reis RS, Pacheco GJ, Pereira AG, Freire DMG (2013) Biosurfactants: production and applications biodegradation—life of science, rolando chamy Francisca Rosenkranz. IntechOpen. https://doi.org/10.5772/56144

    Article  Google Scholar 

  • Resende A, Rocha E, Silva N, Rufino R, Luna J, Sarubbo L (2017) Biosurfactant production by bacteria isolated from seawater for remediation of environments contaminated with oil products. Chem Eng Transac 57:1555–1560

    Google Scholar 

  • Ribeiro BG, Guerra JMC, Sarubbo LA (2020) Potential food application of a biosurfactant produced by Saccharomyces cerevisiae URM 6670. Front Bioeng Biotechnol 8:434. https://doi.org/10.3389/fbioe.2020.00434

    Article  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    CAS  Google Scholar 

  • Rivera DÁ, Urbina M, López MA, López VE (2019) Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 35:155. https://doi.org/10.1007/s11274-019-2729-3

    Article  CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA (2010) Biomedical and therapeutic applications of biosurfactants. In: Sen R (ed) Biosurfactants. Advances in experimental medicine and biology, vol 672. Springer, New York, pp 75–87

    Google Scholar 

  • Rodrigues L, Banat IM, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrobial Chemo 57:609–618. https://doi.org/10.1093/jac/dkl024

    Article  CAS  Google Scholar 

  • Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, Peer VD (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503

    CAS  Google Scholar 

  • Saimmai A, Riansa-Ngawong W, Maneerat S, Dikit P (2019) Application of biosurfactants in the medical field. Walailak J Sci Technol 17(2):154–166

    Google Scholar 

  • Salamat N, Lamoochi R, Shahaliyan F (2018) Metabolism and removal of anthracene and lead by a B. subtilis-produced biosurfactants. Toxicol Rep 5:1120–1123

    CAS  Google Scholar 

  • Sanchita K, Pritisnigdha P (2019) Production and functional characterization of food compatible biosurfactants. Appl Food Sci J 3(1):1–4

    Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401

    Article  CAS  Google Scholar 

  • Santos EF, Teixeira MFS, Converti A, Porto ALF, Sarubbo LA (2019) Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatalysis Agri Biotechnol 17:142–150

    Google Scholar 

  • Saranya P, Swarnalatha S, Sekaran G (2014) Lipoprotein biosurfactant production from an extreme acidophile using fish oil and its immobilization in nanoporous activated carbon for the removal of Ca2+ and Cr3+ in aqueous solution. RSC Adv 4:34144–34155

    CAS  Google Scholar 

  • Sarubbo LA, Rocha RB Jr, Luna JM, Rufino RD, Santos VA, Banat IM (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31(8):707–723. https://doi.org/10.1080/02757540.2015.1095293

    Article  CAS  Google Scholar 

  • Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. J Pone Plos one 13(6):198–107. https://doi.org/10.1371/journal.pone.0198107

    Article  CAS  Google Scholar 

  • Savarino P, Montoneri E, Bottigliengo S (2009) Biosurfactants from urban wastes as auxiliaries for textile dyeing. Indu Eng Chem Res 48:3738–3748

    CAS  Google Scholar 

  • Schagen SK (2017) Topical peptide treatments with effective anti-aging results. Cosmetics 4:16. https://doi.org/10.3390/cosmetics4020016

    Article  CAS  Google Scholar 

  • Shah N, Nikam R, Gaikwad S, Sapre V, Kaur J (2016) Biosurfactant: types, detection methods, importance and applications. Indian J Microbiol Res 3(1):5–10

    Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin-A review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134

    CAS  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. J Environ Sci Technol 45(14):1522–1554. https://doi.org/10.1080/10643389.2014.955631

    Article  CAS  Google Scholar 

  • Shepherd R, Rockey J, Shutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217. https://doi.org/10.1016/0168-1656(95)00053-S

    Article  CAS  Google Scholar 

  • Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Indus Res 65(2):91–115

    Google Scholar 

  • Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilisation-biodegradation process. J Hazardous Mat 137(3):1831–1837

    CAS  Google Scholar 

  • Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. AR Int 4:243–247

    Google Scholar 

  • Silva R, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Review: applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542. https://doi.org/10.3390/ijms150712523

    Article  CAS  Google Scholar 

  • Singh P, Saini HS, Raj M (2016) Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system. Ecotoxicol Environ Saf 134P1:156–162. https://doi.org/10.1016/j.ecoenv.2016.07.020

    Article  CAS  Google Scholar 

  • Singh P, Patil Y, Rale V (2019) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 126(1):2–13

    CAS  Google Scholar 

  • Soare MG, Lakatos ES, Ene L, Malo N, Popa O, Babeanu N (2019) The potential applications of Bacillus sp. and Pseudomonas sp. strains with antimicrobial activity against phytopathogens, in waste oils and the bioremediation of hydrocarbons. Catalysts 9:959. https://doi.org/10.3390/catal9110959

    Article  CAS  Google Scholar 

  • Soares SRCF, De Almeida DG, Brasileiro PPF, Rufino RD, De Luna JM, Sarubbo LA (2018) Production, formulation and cost estimation of a commercial biosurfactant. Biodegradation. https://doi.org/10.1007/s10532-018-9830-4

    Article  Google Scholar 

  • Soltanighias T, Singh AE, Surekha K, Banpurkar A, Koolivand A, Rahi P (2019) Assessment of biosurfactants producing bacteria from oil contaminated soils and their hydrocarbon degradation potential. Env Sustain 2(3):285–296

    CAS  Google Scholar 

  • Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4:161–170

    Google Scholar 

  • Szulc A, Ambrożewick D, Sydow M, Lawniczak L, Piotrowska-Cyplik A, Marecik R (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manage 132:121–128

    CAS  Google Scholar 

  • Takahashi T, Ohno O, Ikeda Y, Ryuishi S, Homma Y, Igarashi M, Umezawa K (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot 59:35–43

    CAS  Google Scholar 

  • Takahashi M, Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2 induced oxidative stress in cultured human skin fibroblasts. J Oleo Sci 61:457–464

    CAS  Google Scholar 

  • Tang Z, Zhang L, Huang Q, Yang Y, Nie Z, Cheng J, Chai M (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Env Safety 122:343–351. https://doi.org/10.1016/j.ecoenv.2015.08.006

    Article  CAS  Google Scholar 

  • Thimon L, Peypoux F, Michel G (1992) Interaction of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol Lett 14:713–718

    CAS  Google Scholar 

  • Tiso T, Thies S, Müller M, Tsvetanova L, Carraresi L, Bröring S, Jaeger KE, Blank LM (2018) Rhamnolipids: production, performance, and application. In: Lee S (ed) consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals Handbook Hydrocarbon Lipid Microbiol. Springer, Cham, pp 587–622

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    CAS  Google Scholar 

  • Tripathi L, Twigg MS, Zompra A, Salek K, Irorere VU, Gutierrez T, Spyroulias GA, Marchant R, Banat IM (2019) Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microb Cell Fact 18:164. https://doi.org/10.1186/s12934-019-1216-8

    Article  CAS  Google Scholar 

  • Tripathy DB, Mishra A (2006) Sustainable biosurfactants. In: Atwood DA (eds.) Sustainable Organic Chemistry, Wiley, pp 175–192

  • Twigg M, Tripathi L, Zompra K, Salek K, Irorere V, Gutierrez T, Spyroulias G, Marchant R, Banat IM (2019) Surfactants from the sea: rhamnolipid production by marine bacteria. Access Microbiol 1(1A):192. https://doi.org/10.1099/acmi.ac2019.po0066

    Article  Google Scholar 

  • Usman MM, Dadrasnia A, Lim KT, Mahmud AF, Ismail S (2016) Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering 3(3):289–304

    CAS  Google Scholar 

  • Van Haesendonck IPH, Vanzeveren ECA (2004) Rhamnolipids in bakery products. U.S. Patent No W.O 2004/040984. Washington, U.S. Patent and Trademark Office.

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 61:214–223

    CAS  Google Scholar 

  • Vecino X, Cruz JM, Moldes AB, Rodrigues LR (2017) Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 37(7):911–923. https://doi.org/10.1080/07388551.2016.1269053

    Article  CAS  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types sources and applications. Res J Microbiol 10(5):181–192. https://doi.org/10.3923/jm.2015.181.192

    Article  CAS  Google Scholar 

  • Wang H, Roelants SLKW, To MH, Patria RD, Kaur G, Lau NS, Lau CY, Van Bogaert INA, Soetaert W, Lin CSK (2018) Starmerella bombicola: recent advances on sophorolipid production and prospects of waste stream utilization. Chem Technol Biotechnol 94(4):999–1007

    Google Scholar 

  • Whang LM, Liu PW, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151(1):155–163. https://doi.org/10.1016/j.jhazmat.2007.05.063

    Article  CAS  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp. strain PML026. J Appl Microbiol 115(3):744–755. https://doi.org/10.1111/jam.12287

    Article  CAS  Google Scholar 

  • Williams K (2009) Biosurfactants for cosmetic applications: overcoming production challenges. MMG 445. Basic Biotechnol 5:78–83

    Google Scholar 

  • Wu YS, Ngai SC, Goh BH, Chan GK, Lee LH, Chuah LH (2017) Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. J Front Pharmacol 8:761. https://doi.org/10.3389/fphar.2017.00761

    Article  CAS  Google Scholar 

  • Wu Y, Xu M, Xue J, Shi K, Gu M (2019) Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment. ACS Omega 4:1645–1651

    CAS  Google Scholar 

  • Yamamoto SS, Morita T, Fukuoka T, Imura T, Yanagidani S, Sogabe A, Kitamoto D, Kitagawa M (2012) The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human. J Oleo Sci 61:407–412

    CAS  Google Scholar 

  • Yamamoto S, Fukuoka T, Imura T, Morita T, Yanagidani S, Kitamoto D, Kitagawa M (2013) Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis. J Oleo Sci 62:381–389

    Google Scholar 

  • Yamashita N, Yokoyama K, Kawashima S, Yamaguchi H, Sato T (2018) Organic nutrients for microbial enhanced oil recovery. Petrol Sci Technol 36(23):1991–1997

    CAS  Google Scholar 

  • Yañez-Ocampo G, Somoza-Coutiño G, Blanco-González C, Wong-Villarreal A (2017) Utilization of agro industrial waste for biosurfactant production by native bacteria from Chiapas. Open Agric 2:341–349. https://doi.org/10.1515/opag-2017-0038

    Article  Google Scholar 

  • Ye Y, Xia Z, Zhang D, Sheng Z, Zhang P, Zhu H, Xu N, Liang S (2019) Multifunctional pharmaceutical effects of the antibiotic daptomycin. Biomed Res Int. https://doi.org/10.1155/2019/8609218

    Article  Google Scholar 

  • Yuliani H, Perdani MS, Savitri I, Manurung M, Sahlan M, Wijanarko A, Hermansyah H (2018) antimicrobial activity of biosurfactant derived from Bacillus subtilis C19. Energy Procedia 153:274–278

    CAS  Google Scholar 

  • Zhao HB, Shao DY, Jiang CM, Shi JL, Li Q, Huang QS, Rajoka MSR, Yang H, Jin ML (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101(15):5951–5960. https://doi.org/10.1007/s00253-017-8396-0

    Article  CAS  Google Scholar 

  • Zhao H, Yan L, Xu X, Jiang C, Shi J, Zhang Y, Liu L, Lei S, Shao D, Huang Q (2018) Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Expr 8:78. https://doi.org/10.1186/s13568-018-0606-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, G., Dhasmana, A. & Kumar, V. Biosurfactants: the next generation biomolecules for diverse applications. Environmental Sustainability 3, 353–369 (2020). https://doi.org/10.1007/s42398-020-00128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00128-8

Keywords

Navigation