Skip to main content
Log in

Iron-Zinc Impregnated Biochar Composite as a Promising Adsorbent for Toxic Hexavalent Chromium Remediation: Kinetics, Isotherms and Thermodynamics

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Owing to the high toxicity of chromium(VI) and the considerable lower toxicity of chromium(III), the removal of chromium(VI) based on reduction to chromium(III) is drawing more and more attraction. In this study, a biochar-zerovalent iron-zinc ferrite composite was developed and its efficacy in the reduction-assisted removal of chromium(VI) was investigated under various experimental conditions of initial solution pH, initial chromium(VI) concentration and contact time. The composite was derived by the pyrolysis of bleached Macadamia nutshell biomass impregnated with 1-[(cyclohexylamino)methyl]-2-naphtholate-zinc(II) complex and iron(II) chloride at 800 °C. Scanning electron microscopic images of the composite showed the porous texture of the composite while X-ray diffraction patterns of the composite suggested the presence of zerovalent iron and zinc ferrite. Maximum chromium removal equaling 89.7% was observed at initial solution pH of 3.0. The Freundlich isotherm model, a modified Van‘t Hoff thermodynamic model, and the pseudo second-order kinetic model were most appropriate in describing the observed effects of Cr(VI) concentration, temperature and contact time on the quantity of Cr(VI) ions adsorbed on the composite, respectively. In conclusion, the biochar-zerovalent iron-zinc ferrite composite showed great potential in the removal of Cr(VI) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qiao K, Tian W, Bai J et al (2020) Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ Technol Innov 19:100907

    Article  Google Scholar 

  2. Li J, Xu J-X, Cao Y-J et al (2019) Preparation of Ganoderma lucidum polysaccharide chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. Int J Biol Macromol 140:782–793

    Article  CAS  Google Scholar 

  3. Owalude SO, Tella AC (2016) Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ J Basic Appl Sci 5:377–388

    Google Scholar 

  4. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  5. Scharf CCC, Zolla V et al (2014) Molecular analysis of chromium and cobalt-related toxicity. Sci Rep 4:5729

    Article  CAS  Google Scholar 

  6. Nieto-Marquez A, Pinedo-Flores A, Picasso G et al (2017) Selective adsorption of Pb2+, Cr3+ and Cd2+ mixtures on activated carbons prepared from waste tires. J Environ Chem Eng 5:1060–1067

    Article  CAS  Google Scholar 

  7. Polowczyk UBF, Rivas BL et al (2016) Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-d-glucamine groups. Chem Eng J 284:395–404

    Article  CAS  Google Scholar 

  8. Abyaneh AS, Fazaelipoor MH (2016) Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J Environ Manag 165:184–187

    Article  Google Scholar 

  9. Kaya A, Onac C, Alpoguz HK (2016) A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current. J Hazard Mater 317:1–7

    Article  CAS  Google Scholar 

  10. Singh KK, Sarma KC (2016) A simple and feasible approach to decorating MWCNT with Fe3O4 and ZnS and their use as a magnetically separable photocatalyst in the degradation of Cr(VI) in wastewater. Environ Nanotechnol Monit Manag 6:206–213

    Google Scholar 

  11. Korak JA, Huggins R, Arias-Paic M (2017) Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Res 118:141–151

    Article  CAS  Google Scholar 

  12. Habiba U, Siddique TA, Joo TC et al (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr Polym 157:1568–1576

    Article  CAS  Google Scholar 

  13. Nandi R, Laskar S, Saha B (2017) Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed 43:1619–1634

    Article  CAS  Google Scholar 

  14. Aoudj S, Khelifa A, Drouiche N et al (2015) Simultaneous removal of chromium(VI) and fluoride by electrocoagulation-electroflotation: application of a hybrid Fe-Al anode. Chem Eng J 267:153–162

    Article  CAS  Google Scholar 

  15. Jeon C (2015) Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. J Ind Eng Chem 32:195–200

    Article  CAS  Google Scholar 

  16. Pap S, Bezanovic V, Radonic J et al (2018) Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead. J Mol Liq 268:315–325

    Article  CAS  Google Scholar 

  17. Pakade VE, Tavengwa NT, Madikizela LM (2019) Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 9:26142–26164

    Article  CAS  Google Scholar 

  18. Choudhary B, Paul D (2018) Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J Environ Chem Eng 6:2335–2343

    Article  CAS  Google Scholar 

  19. Lin H, Han S, Dong Y, He Y (2017) The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI). Appl Surf Sci 412:152–159

    Article  CAS  Google Scholar 

  20. Nguyen TAH, Ngo HH, Guo W et al (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol 148:574–585

    Article  CAS  Google Scholar 

  21. Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107

    Article  Google Scholar 

  22. Kahraman HT, Pehlivan E (2017) Cr6+ removal using oleaster (Elaeagnus) seed and cherry (Prunus avium) stone biochar. Powder Technol 306:61–67

    Article  CAS  Google Scholar 

  23. Zhang X, Zhang L, Li A (2018) Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. J Environ Manag 206:989–998

    Article  CAS  Google Scholar 

  24. Rajapaksha AU, Alam MS, Chen N et al (2018) Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations. Sci Total Environ 625:1567–1573

    Article  CAS  Google Scholar 

  25. Hlungwane L, Viljoen EL, Pakade VE (2018) Macadamia nutshells-derived activated carbon and attapulgite clay combination for synergistic removal of Cr(VI) and Cr(III). Adsorpt Sci Technol 36:713–731

    Article  CAS  Google Scholar 

  26. Hollister CC, Bisogni JJ, Lehmann J (2013) Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). J Environ Qual 42:137–144

    Article  CAS  Google Scholar 

  27. Wan Z, Cho D-W, Tsang DW et al (2019) Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ Pollut 247:410–420

    Article  CAS  Google Scholar 

  28. Mahmoud ME, Mohamed AK, Salam MA (2021) Self-decoration of N-doped graphene oxide 3-D hydrogel onto magnetic shrimp shell biochar for enhanced removal of hexavalent chromium. J Hazard Mater 408:124951

    Article  CAS  Google Scholar 

  29. Zou H, Zhao J, He F et al (2021) Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. J Hazard Mater 413:125252

    Article  CAS  Google Scholar 

  30. Zhong D, Zhang Y, Wang L et al (2018) Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe3O4 and persistent free radicals. Environ Pollut 243:1302–1309

    Article  CAS  Google Scholar 

  31. Su C, Wang S, Zhou Z et al (2021) Chemical processes of Cr(VI) removal by Fe-modified biochar under aerobic and anaerobic conditions and mechanism characterization under aerobic conditions using synchrotron-related techniques. Sci Total Environ 768:144604

    Article  CAS  Google Scholar 

  32. Zhang S, Lyu H, Tang J et al (2019) A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere 217:686–694

    Article  CAS  Google Scholar 

  33. He R, Yuan X, Huang Z et al (2019) Activated biochar with iron-loading and its application in removing Cr (VI) from aqueous solution. Colloids Surfaces A 579:123642

    Article  CAS  Google Scholar 

  34. Qian L, Shang X, Zhang B et al (2019) Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere 215:739–745

    Article  CAS  Google Scholar 

  35. Moyo M, Modise SJ, Pakade VE (2020) Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution. Sci Total Environ 743:140614

    Article  CAS  Google Scholar 

  36. Lace A, Ryan D, Bowkett M, Cleary J (2019) Chromium monitoring in water by colorimetry using optimised 1,5-diphenylcarbazide method. Int J Environ Res Public Health 16:1803

    Article  CAS  Google Scholar 

  37. Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  Google Scholar 

  38. Schuler P, Speck T, Buhrig-Polaczek A, Fleck C (2014) Structure-function relationships in Macadamia integrifolia seed coats: fundamentals of the hierarchical microstructure. PLoS ONE 9:e102913

    Article  Google Scholar 

  39. Maremeni LC, Modise SJ, Mtunzi FM et al (2018) Adsorptive removal of hexavalent chromium by diphenylcarbazide-grafted Macadamia nutshell powder. Bioinorg Chem Appl 2018:6171906

    Article  Google Scholar 

  40. Bartoli M, Nasir MA, Jagdale P et al (2020) Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. J Compos Mater 54:1863–1873

    Article  CAS  Google Scholar 

  41. Wu J, Yan M, Lv S et al (2021) Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere 262:127733

    Article  CAS  Google Scholar 

  42. Fu R, Zhang X, Xu Z et al (2017) Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism. Sep Purif Technol 174:362–371

    Article  CAS  Google Scholar 

  43. Li Y-X, Wang L, Chai F-F et al (2020) Highly effective removal of antibiotics from aqueous solution by magnetic ZnFe2O4/activated carbon composite. Water Sci Technol 82:877–886

    Article  CAS  Google Scholar 

  44. Wang K, Zhan S, Sun H et al (2020) Hollow porous core-shell ZnFe2O4/AgCl nanocubes coated with EDTA and Ag nanoparticles for enhanced photocatalytic performances of visible-light-driven. Chem Eng J 400:908

    Article  Google Scholar 

  45. Fang S, Zhou Y, Zhou M et al (2018) Facile synthesis of novel ZnFe2O4/CdS nanorods composites and its efficient photocatalytic reduction of Cr(VI) under visible-light irradiation. J Ind Eng Chem 58:64–73

    Article  CAS  Google Scholar 

  46. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  47. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  48. Guan X, Chang J, Xu Z, Fan H (2016) Remediation of chromium(III)-contaminated tannery effluents by using gallic acid-conjugated magnetite nanoparticles. RSC Adv 6:29054–29063

    Article  CAS  Google Scholar 

  49. Xu S, Liang M, Ding Y et al (2021) Synthesis, optical characterization, and adsorption of novel hexavalent chromium and total chromium sorbent: a fabrication of mulberry stem biochar/Mn-Fe binary oxide composite via response surface methodology. Front Environ Chem 2:692810

    Article  Google Scholar 

  50. Pakade VE, Nchoe OB, Hlungwane L, Tavengwa NT (2017) Sequestration of hexavalent chromium from aqueous solutions by activated carbon derived from Macadamia nutshells. Water Sci Technol 75:196–206

    Article  CAS  Google Scholar 

  51. Liang M, Ding Y, Zhang Q et al (2020) Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse. Sci Rep 10:21473

    Article  CAS  Google Scholar 

  52. Qin L, He L, Yang W, Lin A (2020) Preparation of a novel iron-based biochar composite for removal of hexavalent chromium in water. Environ Sci Pollut Res 27:9214–9226

    Article  CAS  Google Scholar 

  53. Yu Y, An Q, Jin L et al (2020) Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application. Bioresour Technol 297:122466

    Article  CAS  Google Scholar 

  54. Lima EC, Hosseini-Bandegharaei A, Moreno-Pirajan JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  55. Luo T, Tian X, Yang C et al (2017) Polyethylenimine-functionalized corn bract, an agricultural waste material, for efficient removal and recovery of Cr(VI) from aqueous solution. J Agric Food Chem 65:7153–7158

    Article  CAS  Google Scholar 

  56. Lagergren S (1898) The theory of the so-called adsorption of dissolved substances. K Sven Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  57. Ho Y-S, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  58. Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR, Otd Tekh Nauk 2:209–216

    Google Scholar 

  59. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:156

    Article  Google Scholar 

  60. Aharoni C, Sideman S, Hoffer E (1979) Adsorption of phosphate ions by collodion-coated alumina. J Chem Technol Biotechnol 29:404–412

    Article  CAS  Google Scholar 

  61. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89:31–60

    Article  Google Scholar 

  62. Guo X, Wang J (2019) A general kinetic model for adsorption: theoretical analysis and modeling. J Mol Liq 288:111100

    Article  CAS  Google Scholar 

  63. Ntuli TD, Pakade VE (2020) Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption-reduction mechanism: adsorption isotherms, kinetics and thermodynamics. Chem Eng Commun 207:279–294

    Article  CAS  Google Scholar 

  64. Tadjenant Y, Dokhan N, Barras A et al (2020) Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium. Chemosphere 258:127316

    Article  CAS  Google Scholar 

  65. Zhou Y, Min Y, Qiao H et al (2015) Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol 74:271–277

    Article  CAS  Google Scholar 

  66. Moyo M, Pakade VE, Modise SJ (2017) Biosorption of lead(II) by chemically modified Mangifera indica seed shells: adsorbent preparation, characterization and performance assessment. Process Saf Environ Prot 111:40–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Research Foundation (NRF) of South Africa through Thuthuka Grant Nos. TTK13061018779 and TTK160510164648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vusumzi Emmanuel Pakade.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qhubu, M.C., Methula, B., Xaba, T. et al. Iron-Zinc Impregnated Biochar Composite as a Promising Adsorbent for Toxic Hexavalent Chromium Remediation: Kinetics, Isotherms and Thermodynamics. Chemistry Africa 5, 1797–1807 (2022). https://doi.org/10.1007/s42250-021-00273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00273-5

Keywords

Navigation