Skip to main content
Log in

Comparison of aluminum and iron nanoparticles for chromium removal from aqueous solutions and tannery wastewater, empirical modeling and prediction

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The tanning industry is considered one of the main sources of pollution. This study aims to investigate the efficiency of nano zero-valent iron (nZVI) and the nano zero-valent aluminum (nZVAl) particles for the removal of chromium (Cr) from aqueous solutions and tannery wastewater. For the aqueous solutions, the maximum removal efficiency of 5 mg/L Cr reached 81.2% using nZVAl and 77.6% using nZVI, under the following conditions: time 20 min, pH 3, stirring rate 200 rpm, and dosage 0.6 g/L. The adsorption data for chromium removal using nZVAl and nZVI fitted well to the Freundlich and Koble-Corrigan models, respectively. For both nanometals, the kinetic data fitted well to pseudo second order (PSO). Response surface methodology (RSM) and artificial neural network (ANN) models with r2-value higher than 0.95 were found to be accurate in predicting chromium removal efficiency using both nanometals. The synthesized nZVI and nZVAl particles were applied to real tannery wastewater samples. The removal efficiencies of biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), lead (Pb), nickel (Ni), and arsenic (As) using both nZVAl and nZVI exceeded 98%. For total phosphorus (TP), total nitrogen (TN), and hydrogen sulfide (H2S), nZVI demonstrated a higher removal efficiency compared to nZVAl. A significant increase was also reported for Cr removal, reaching 70% using nZVI and 74% using nZVAl.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The underlying data can be found in the Supplementary Material.

References

  1. Y. Fei, C. Liu, Environmental Materials and Waste: Resource Recovery and Pollution Prevention, (Elsevier Inc.), pp. 265–284. https://doi.org/10.1016/C2014-0-05144-1 (2016)

  2. H. Limet, R.J. Forbes, Studies in Ancient Technology. (BRILL), https://brill.com/view/serial/SAT. Accessed May 24, 2021 (1966)

  3. R.A. Frosch, N.E. Gallopoulos, Sci. Am. 261, 3 (1989). https://doi.org/10.1038/scientificamerican0989-144

    Article  Google Scholar 

  4. A.S. Mahmoud, N.Y. Mohamed, M.K. Mostafa, M.S. Mahmoud, Air, Soil Water Res. 14 (2021). https://doi.org/10.1177/11786221211028162

  5. A.I. Hafez, M.S. El-Manharawy, M.A. Khedr, Desalination 144, 1–3 (2002). https://doi.org/10.1016/S0011-9164(02)00318-1

    Article  Google Scholar 

  6. V.K. Gupta, M. Gupta, S. Sharma, Water Res. 35, 5 (2001). https://doi.org/10.1016/S0043-1354(00)00389-4

    Article  Google Scholar 

  7. K.J. Sreeram, T. Ramasami, Resour. Conserv. Recycl. 38, 3 (2003). https://doi.org/10.1016/S0921-3449(02)00151-9

    Article  Google Scholar 

  8. A. Kurniawan, V.O.A. Sisnandy, K. Trilestari, J. Sunarso, N. Indraswati, S. Ismadji, Ecol. Eng. 37, 6 (2011). https://doi.org/10.1016/j.ecoleng.2011.01.019

    Article  Google Scholar 

  9. M. Chowdhury, M.G. Mostafa, T.K. Biswas, A.K. Saha, Water Resour. Ind. 3 (2013). https://doi.org/10.1016/j.wri.2013.05.002

  10. L. Szpyrkowicz, S.N. Kaul, R.N. Neti, S. Satyanarayan, Water Res. 39, 8 (2005). https://doi.org/10.1016/j.watres.2005.01.016

    Article  CAS  Google Scholar 

  11. D. Mohan, K.P. Singh, V.K. Singh, J. Hazard. Mater. 152, 3 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.079

    Article  CAS  Google Scholar 

  12. M. Umar et al., Int. J. Scientific Res. Eng. Stud. (IJSRES) 3, 1 (2016)

    Google Scholar 

  13. M.K. Mostafa, R.W. Peters, Water Environ. J. 30, 1–2 (2016). https://doi.org/10.1111/wej.12161

    Article  CAS  Google Scholar 

  14. R.W. Peters, M.K. Mostafa, Annual AIChE Meeting Proceedings; Pittsburgh, PA, October 28 - November 2, (2012). https://www.aiche.org/conferences/aiche-annual-meeting/2012/proceeding/paper/672d-characterization-and-assessment-industrial-wastewaters-egypt.

  15. G. Saxena, R. Chandra, R.N. Bharagava, Rev. Environ. Contam. Toxicol. 240 (2017). https://doi.org/10.1007/398_2015_5009.

  16. Z.H. Su, M.S. Mahmoud, S.J. Fan, Y. Zhang, F. Peng, 10.15376/biores.14.4.8278-8288. BioResources 14, 4 (2019)

    Google Scholar 

  17. S.J. Fan, M.S. Mahmoud, B. Wen, Z.H. Su, Y. Zhang, 10.15376/biores.13.2.3545-3553. BioResources 13, 2 (2018)

    Google Scholar 

  18. O.M. Abdeldayem et al., Water 12, 9 (2020). https://doi.org/10.3390/W12092565

    Article  Google Scholar 

  19. K.M. Morsy, M.K. Mostafa, K.Z. Abdalla, M.M. Galal, Air, Soil Water Res. 13 (2020). https://doi.org/10.1177/1178622120935857

  20. R. Aravindhan, B. Madhan, J.R. Rao, B.U. Nair, T. Ramasami, Environ. Sci. Technol. 38, 1 (2003). https://doi.org/10.1021/ES034427S

    Article  Google Scholar 

  21. G. Durai, M. Rajasimman, J. Environ. Sci. Technol. 4, 1 (2011). https://doi.org/10.3923/jest.2011.1.17

    Article  CAS  Google Scholar 

  22. I. Oller, S. Malato, J.A. Sánchez-Pérez, Sci. Total Environ. 409, 20 (2011). https://doi.org/10.1016/j.scitotenv.2010.08.061

    Article  CAS  Google Scholar 

  23. G. Lofrano, S. Meriç, G.E. Zengin, D. Orhon, Sci. Total Environ. 461–462 (2013). https://doi.org/10.1016/j.scitotenv.2013.05.004.

  24. A.S. Mahmoud, M.K. Mostafa, R.W. Peters, Nanomaterials Nanotechnol. 11 (2021). https://doi.org/10.1177/18479804211041181.

  25. A. Hamdy, M.K. Mostafa, M. Nasr, Environ. Sci. Pollut. Res. 26, 24 (2019). https://doi.org/10.1007/s11356-019-05850-3

    Article  CAS  Google Scholar 

  26. R.S. Farag, M.M. Elshfai, A.S. Mahmoud, M.K. Mostafa, R.W. Peters, Annual AIChE Meeting Proceedings; Pittsburgh, PA, October 28 - November 2 (2018). https://www.aiche.org/conferences/aiche-annual-meeting/2018/proceeding/paper/592d-green-synthesis-nano-iron-carbide-preparation-characterization-and-application-removal.

  27. M.S. Mahmoud, A.S. Mahmoud, Emergent Mater. (2021). https://doi.org/10.1007/s42247-021-00253-y

  28. A. Hamdy, M.K. Mostafa, M. Nasr, Int. J. Environ. Sci. Technol. 16, 1 (2019). https://doi.org/10.1007/s13762-018-1677-z

    Article  CAS  Google Scholar 

  29. J. Heberling, Y. Adewuyi, A.S. Mahmoud, M. Mostafa, R.W. Peters, AIChE Annual Meeting Proceedings, Pittsburgh, PA, October 28 - November 2 (2018). https://www.aiche.org/conferences/aiche-annual-meeting/2018/proceeding/paper/12e-aop-performance-wastewater-treatment-plants

  30. A.S. Mahmoud, R.S. Farag, M.M. Elshfai, L.A. Mohamed, S.M. Ragheb, Air, Soil Water Res. 12 (2019). https://doi.org/10.1177/1178622119878707.

  31. A.S. Mahmoud, M.K. Mostafa, M. Nasr, Sep. Sci. Technol. 54, 1 (2019). https://doi.org/10.1080/01496395.2018.1504799

    Article  CAS  Google Scholar 

  32. Y.H. Shih, C.Y. Hsu, Y.F. Su, Sep. Purif. Technol. 76, 3 (2011). https://doi.org/10.1016/j.seppur.2010.10.015

    Article  CAS  Google Scholar 

  33. P. Treviño, J.G. Ibanez, R. Vasquez-Medrano, Int. J. Electrochem. Sci. (2014). https://sistemadeinvestigacion.ibero.mx/es/publications/chromium-vi-reduction-kinetics-by-zero-valent-aluminum-2

  34. B. Jiang, S. Xin, L. Gao, S. Luo, J. Xue, M. Wu, Chem. Eng. J. 308 (2017). https://doi.org/10.1016/J.CEJ.2016.09.098

  35. F. Fu, W. Han, Z. Cheng, B. Tang, New pub Balaban 57, 12 (2015). https://doi.org/10.1080/19443994.2015.1006259

    Article  CAS  Google Scholar 

  36. Y. Bagbi, Adv. Mater. Proc. 2, 4 (2017). https://doi.org/10.5185/AMP.2017/407

    Article  Google Scholar 

  37. S. Li, W. Wang, F. Liang, W.X. Zhang, J. Hazard. Mater. 322 (2017). https://doi.org/10.1016/J.JHAZMAT.2016.01.032

  38. A. Hamdy, M.K. Mostafa, M. Nasr, Environ. Sci. Pollut. Res. 26, 24 (2019). https://doi.org/10.1007/s11356-019-05850-3

    Article  CAS  Google Scholar 

  39. M.K. Mostafa, A.S. Mahmoud, R.A. SaryEl-deen, R.W. Peters, Annual AIChE Meeting Proceedings; Minneapolis, MN, October 29 - November 3 (2017). https://www.aiche.org/conferences/aiche-annual-meeting/2017/proceeding/paper/549e-application-entrapped-nano-zero-valent-iron-cellulose-acetate-membranes-domestic-wastewater

  40. A.S. Mahmoud, R.A. SaryEl-deen, M.K. Mostafa, R.W. Peters, Annual AIChE Meeting Proceedings; Minneapolis, MN, October 29 - November 3 (2017). https://www.aiche.org/conferences/aiche-annual-meeting/2017/proceeding/paper/655d-artificial-intelligence-organochlorine-pesticides-removal-aqueous-solutions-using-entrapped

  41. Y. Xi, M. Mallavarapu, R. Naidu, Mater. Res. Bull. 45, 10 (2010). https://doi.org/10.1016/j.materresbull.2010.06.046

    Article  CAS  Google Scholar 

  42. M. M. El-Shafei, A.S. Mahmoud, M.K. Mostafa, R.W. Peters, AIChE Annual Meeting; San Francisco, CA, November 13-18 (2016). https://www.aiche.org/conferences/aiche-annual-meeting/2016/proceeding/paper/60b-effects-entrapped-nzvi-alginate-polymer-on-btex-removal

  43. A.S. Mahmoud, M.K. Mostafa, S.A. Abdel-Gawad, Water Sci. Technol. Water Supply 18, 5 (2018). https://doi.org/10.2166/ws.2017.225

    Article  CAS  Google Scholar 

  44. S. Agarwal, I. Tyagi, V.K. Gupta, N. Ghasemi, M. Shahivand, M. Ghasemi, J. Mol. Liq. 218 (2016). https://doi.org/10.1016/j.molliq.2016.02.073.

  45. H. Mittal, S.S. Ray, Int. J. Biol. Macromol. 88 (2016). https://doi.org/10.1016/j.ijbiomac.2016.03.032

  46. APHA, 23rd Edition, Journal of Chemical Information and Modeling (2017). https://www.awwa.org/Store/Product-Details/productId/65266295. Accessed May 24, 2021

  47. A.S. Mahmoud, R.S. Farag, M.M. Elshfai, Egypt. J. Pet. 29, 1 (2020). https://doi.org/10.1016/j.ejpe.2019.09.001

    Article  Google Scholar 

  48. H.M. Abdel-Aziz, R.S. Farag, S.A. Abdel-Gawad, J. Environ. Eng. Sci. 15, 3 (2020). https://doi.org/10.1680/jenes.19.00047

    Article  Google Scholar 

  49. H.M. Abdel-Aziz, R.S. Farag, S.A. Abdel-Gawad, Adsorpt. Sci. Technol. 38, 9–10 (2020). https://doi.org/10.1177/0263617420947495

    Article  CAS  Google Scholar 

  50. H.M. Abdel-Aziz, S.N. Fayyadh, J. Environ. Eng. Sci. 16, 3 (2021). https://doi.org/10.1680/jenes.20.00044

    Article  Google Scholar 

  51. H.M. Abdel-Aziz, R.S. Farag, S.A. Abdel-Gawad, Int. J. Environ. Res. 13, 5 (2019). https://doi.org/10.1007/s41742-019-00220-w

    Article  CAS  Google Scholar 

  52. S.A. Abdel-Gawad, H.M. Abd El-Aziz, Air, Soil Water Res. 12 (2019). https://doi.org/10.1177/1178622119848761

  53. A.S. Mahmoud, A. Ismail, M.K. Mostafa, M.S. Mahmoud, W. Ali, A.M. Shawky, Sep. Sci. Technol. 55, 4 (2020). https://doi.org/10.1080/01496395.2019.1574832

    Article  CAS  Google Scholar 

  54. R.S. Farag, M.M. Elshfai, A.S. Mahmoud, M.K. Mostafa, A. Karam, R.W. Peters, AIChE Annual Meeting; Orlando, FL, November 10-15 (2019). https://www.aiche.org/conferences/aiche-annual-meeting/2019/proceeding/paper/670d-study-degradation-and-adsorption-processes-organic-matters-domestic-wastewater-using-chemically

  55. M. Moradi, A.M. Mansouri, N. Azizi, J. Amini, K. Karimi, K. Sharafi, Desalin. Water Treat. 57, 25 (2016). https://doi.org/10.1080/19443994.2015.1054311

    Article  CAS  Google Scholar 

  56. A. Karami et al., Desalin. Water Treat. 89 (2017). https://doi.org/10.5004/dwt.2017.21366.

  57. A. Azari et al., Water Sci. Technol. 74, 6 (2016). https://doi.org/10.2166/wst.2016.318

    Article  CAS  Google Scholar 

  58. R.A. Saryel-Deen, A.S. Mahmoud, M.S. Mahmoud, M.K. Mostafa, AIChE Annual Meeting; Minneapolis, MN, October 29 - November 3 (2017). https://www.aiche.org/conferences/aiche-annual-meeting/2017/proceeding/paper/583aa-adsorption-and-kinetic-studies-using-entrapped-sewage-sludge-ash-removal-chemical-oxygen

  59. S.A. Abdel-Gawad, H.M. Abdel-Aziz, Appl. Water Sci. 9, 4 (2019). https://doi.org/10.1007/s13201-019-0951-7

    Article  CAS  Google Scholar 

  60. H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li, W. Xia, J. Hazard. Mater. 150, 2 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.126

    Article  CAS  Google Scholar 

  61. E. Malkoc, Y. Nuhoglu, Sep. Purif. Technol. 54, 3 (2007). https://doi.org/10.1016/j.seppur.2006.09.017

    Article  CAS  Google Scholar 

  62. V.K. Garg, R. Gupta, R. Kumar, R.K. Gupta, Bioresour. Technol. 92, 1 (2004). https://doi.org/10.1016/j.biortech.2003.07.004

    Article  CAS  Google Scholar 

  63. A. Verma, S. Chakraborty, J.K. Basu, Sep. Purif. Technol. 50, 3 (2006). https://doi.org/10.1016/j.seppur.2005.12.007

    Article  CAS  Google Scholar 

  64. J.R. Memon, S.Q. Memon, M.I. Bhanger, A. El-Turki, K.R. Hallam, G.C. Allen, Colloids Surfaces B Biointerfaces 70, 2 (2009). https://doi.org/10.1016/j.colsurfb.2008.12.032

    Article  CAS  Google Scholar 

  65. H.L. Lien, C.C. Yu, Y.C. Lee, Chemosphere 80, 8 (2010). https://doi.org/10.1016/j.chemosphere.2010.05.013

    Article  CAS  Google Scholar 

  66. M. Ali Atieh, Procedia Environ. Sci. 4 (2011). https://doi.org/10.1016/j.proenv.2011.03.033

  67. F. Mutongo, O. Kuipa, P.K. Kuipa, Bioinorg. Chem. Appl., Article ID 973153 (2014). https://doi.org/10.1155/2014/973153

  68. U.K. Garg, M.P. Kaur, D. Sud, V.K. Garg, Desalination 249, 2 (2009). https://doi.org/10.1016/j.desal.2008.10.025

    Article  CAS  Google Scholar 

  69. S. Arabi, M.R. Sohrabi, Water Sci. Technol. 70, 1 (2014). https://doi.org/10.2166/wst.2014.189

    Article  CAS  Google Scholar 

  70. T. Shahwan et al., Chem. Eng. J. 172, 1 (2011). https://doi.org/10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  71. J.F. Gao, H.Y. Li, K.L. Pan, C.Y. Si, RSC Adv. 6, 27 (2016). https://doi.org/10.1039/c5ra26668h

    Article  Google Scholar 

  72. Sigma-Aldrich, IR Spectrum Table, Sigma-Aldrich, (2019). https://www.sigmaaldrich.com/MY/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table%0Ahttps://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html#ir-table-by-compound%0A. Accessed Aug. 31, 2021

  73. W.O. George, Spectrochim. Acta Part A Mol. Spectrosc. 27, 2 (1971). https://doi.org/10.1016/0584-8539(71)80033-8

    Article  Google Scholar 

  74. S. Jeon, C.B. Tabelin, H. Takahashi, I. Park, M. Ito, N. Hiroyoshi, Hydrometallurgy 191 (2020). https://doi.org/10.1016/j.hydromet.2019.105165

  75. K. Selvi, S. Pattabhi, K. Kadirvelu, Bioresour. Technol. 80, 1 (2001). https://doi.org/10.1016/S0960-8524(01)00068-2

    Article  Google Scholar 

  76. E. Mekonnen, M. Yitbarek, and T.R. Soreta, South African J. Chem. 68 (2015). https://doi.org/10.17159/0379-4350/2015/V68A7

  77. P. Yuan et al., J. Hazard. Mater. 166, 2–3 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.083

    Article  CAS  Google Scholar 

  78. A. Ahmad et al., New J. Chem. 41, 19 (2017). https://doi.org/10.1039/C7NJ02026K

    Article  Google Scholar 

  79. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpää, Water Resour. Ind. 20 (2018). https://doi.org/10.1016/J.WRI.2018.10.001.

  80. A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das, Chem. Eng. J. 137, 3 (2008). https://doi.org/10.1016/J.CEJ.2007.05.021

    Article  Google Scholar 

  81. J. Hu, G. Chen, I.M.C. Lo, Water Res. 39, 18 (2005). https://doi.org/10.1016/J.WATRES.2005.05.051

    Article  Google Scholar 

  82. S. Chatterjee, S. Mahanty, P. Das, P. Chaudhuri, S. Das, Chem. Eng. J. 385 (2020). https://doi.org/10.1016/J.CEJ.2019.123790

  83. M. Nur-E-Alam, M.A.S. Mia, F. Ahmad, M. Mafizur Rahman, Appl. Water Sci. 8, 5 (2018). https://doi.org/10.1007/S13201-018-0774-Y

    Article  Google Scholar 

  84. D. Bedada, K. Angassa, A. Tiruneh, H. Kloos, J. Fito, Energy. Ecol. Environ. 5, 3 (2020). https://doi.org/10.1007/s40974-020-00160-8

    Article  Google Scholar 

  85. M. Dakiky, M. Khamis, A. Manassra, M. Mer’eb, Adv. Environ. Res. 6, 4 (2002). https://doi.org/10.1016/S1093-0191(01)00079-X

    Article  Google Scholar 

  86. J.E.L. Parañeaque, M. Concepcion Maguyon-Detras, V.P. Migo, C.G. Alfafara, IOP Conference Series. Mater. Sci. Eng. 778, 1 (2020). https://doi.org/10.1088/1757-899X/778/1/012134

    Article  Google Scholar 

  87. J. Pradhan, S.N. Das, R.S. Thakur, J. Colloid Interface Sci. 217, 1 (1999). https://doi.org/10.1006/jcis.1999.6288

    Article  Google Scholar 

  88. S.O. Owalude, A.C. Tella, Beni-Suef Univ. J. Basic Appl. Sci. 5, 4 (2016). https://doi.org/10.1016/J.BJBAS.2016.11.005

    Article  Google Scholar 

  89. S. Zhou, Y. Li, J. Chen, Z. Liu, Z. Wang, P. Na, RSC Adv. 4, 92 (2014). https://doi.org/10.1039/C4RA08754B

    Article  CAS  Google Scholar 

  90. M.K. Mostafa, R.W. Peters, J. Mater. Cycles Waste Manag. 19, 2 (2017). https://doi.org/10.1007/s10163-016-0485-0

    Article  CAS  Google Scholar 

  91. M.K. Mostafa, R.W. Peters, J. Air Waste Manag. Assoc. 67, 3 (2017). https://doi.org/10.1080/10962247.2016.1234421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Housing and Building Research Center (HBRC) especially Prof Dr. Khalid Mohamed Yousri Prof Dr. Amr Hefnawy, and Prof Dr. Khaled El Zahaby, and Badr University in Cairo (BUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Mahmoud.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Supplementary Table 1

contains the results of experimental and calculated Qe (mg/g) for all nonlinear isotherm models after using nZVI and nZVAl for chromium removal. (DOCX 17 kb)

Supplementary Table 2

contains the results of experimental and calculated Qt (mg/mg) for chromium removal using nZVI and nZVAl. (DOCX 13 kb)

Supplementary Table 3

contains the errors mathematical equation. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.S., Mahmoud, A.S., El-Said, M.A. et al. Comparison of aluminum and iron nanoparticles for chromium removal from aqueous solutions and tannery wastewater, empirical modeling and prediction. emergent mater. 5, 1729–1744 (2022). https://doi.org/10.1007/s42247-021-00320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00320-4

Keywords

Navigation