Skip to main content
Log in

Compression behavior of metal foams with real pore structures through CT scan images

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the real pore structure obtained from computed tomography (CT) scan images, a three-dimensional (3D) model of the metal foam sample with specified porosity is established, and the model is compressed and simulated by finite element method with the simulation results compared with the experimental test results for validation. At the same time, based on the spatial distribution characteristics of cells extracted from 3D model construction, a widely used metal foam model with Voronoi pore structure or spherical pore structure was established and simulated under compression. The two compression simulation results with regular pore structure models were also compared with the experimental results and CT model results to study the influence of cell wall morphology on the compression performance of metal foams. The simulation results show that CT model agrees well with the experimental results and is more accurate than Voronoi pore or spherical pore model, which can provide a more reasonable option for investigation of metal foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Li, F. Zhang, China Foundry Machinery & Technology 56 (2021) 82–88.

    Google Scholar 

  2. J. Banhart, Manuf. Charact. Appl. Cell. Met. Foam 46 (2001) 553–559.

    Google Scholar 

  3. D.H. Yang, J.Q. Chen, L. Wang, J.H. Jiang, A.B. Ma, J. Iron Steel Res. Int. 25 (2018) 90–98.

    Article  Google Scholar 

  4. Y. Zou, D.P. He, J.P. Jiang, Scientia Sinica (Chimica) 47 (2004) 407–413.

    Google Scholar 

  5. L.W. Pan, D.W. Rao, Y.W. Yang, J.Y Qiu, J.B. Sun, N. Gupta, Z.L. Hu, J. Porous Mater. 27 (2020) 1127–1137.

    Article  Google Scholar 

  6. D.W. Rao, Y.W. Yang, Y. Huang, J.B. Sun, L.W. Pan, Z.L. Hu, Kovove Mater. 58 (2020) 395–407.

    Article  Google Scholar 

  7. Y.J. Shang, T.Z. Lu, C.Q. Chen, Chinese Journal of Solid Mechanics 30 (2009) 325–332.

    Google Scholar 

  8. X.S. Qu, L.H. Wang, Y. Ju, D.W. Liu, H.L. Zhang, Z.J. Zhu, Y.B. Hu, Mater. Mech. Eng. 44 (2020) 91–96.

    Google Scholar 

  9. L.J. Chen, X.Z. Hu, K. He, Q.Y. Zuo, H. Mao, Journal of Functional Materials and Devices 21 (2015) 165–170.

    Google Scholar 

  10. G.Y. Sun, H. Jiang, J.G. Fang, G.Y. Li, Q. Li, Mater. Des. 110 (2016) 705–719.

    Article  Google Scholar 

  11. M.L. Zhao, Y.Z. Song, Z.Q. Li, Journal of Mechanical Strength 31 (2009) 932–938.

    Google Scholar 

  12. I. Jeon, T. Asahina, K.J. Kang, S. Im, T.J. Liu, Mech. Mater. 42 (2010) 227–236.

    Article  Google Scholar 

  13. F. Li, M. Wang, X.L. Qi, J.Y. Feng, X.H. Liu, X.F. Hu, J. Mater. Sci. Eng. 29 (2011) 916–919.

    Google Scholar 

  14. Y.L. Sun, Q.M. Li, T. Lowe, S.A. McDonald, P.J. Withers, Mater. Des. 89 (2016) 215–224.

    Article  Google Scholar 

  15. Z. Chen, Q. Fang, J.H. Zhang, Y.D. Zhang, Eng. Mech. 34 (2017) 212–221.

    Google Scholar 

  16. H.Z.Q. Li, Y.D. Zhang, J.H. Zhang, C.L. Jiang, Journal of Beijing University of Aeronautics and Astronautics 44 (2018) 160–168.

    Google Scholar 

  17. Y.L. Mu, G.C. Yao, L.S. Liang, H.J. Luo, G.Y. Zu, Scripta Mater. 63 (2010) 629–632.

    Article  Google Scholar 

  18. H. Wu, R.G. Wang, S. Fang, W.T. Yang, Journal of Engineering Graphics 32 (2011) 67–75.

    Google Scholar 

  19. Y.F. Zhu, Y.G. Sun, Acta Materiae Compositae Sinica 34 (2017) 1810–1816.

    Google Scholar 

  20. J. Wang, W.T. Li, Q.C. Chen, K.R. Feng, H.X. He, J.F. Sun, Plastics Sci. Technol. 47 (2019) 102–106.

    Google Scholar 

  21. Z.B. Li, X.Y. Li, Rare Met. Mater. Eng. 49 (2020) 3203–3208.

    Google Scholar 

  22. B. Wan, Ship Sci. Technol. 42 (2020) 67–69.

    Google Scholar 

  23. Q.H. Gao, Z.Q. Guan, Y.X. Gu, Y.H. Yin, Journal of Dalian University of Technology 46 (2006) 641–646.

    Google Scholar 

  24. H. Han, A theoretical study of sphere packing in confined space, Harbin Institute of Technology, Harbin, China, 2018.

  25. P. Kornerup, J.M. Muller, Theoret. Comput. Sci. 351 (2006) 101–110.

    Article  MathSciNet  Google Scholar 

  26. Z. Hu, A.B. Ma, D.H. Yang, J.Q. Chen, J.H. Jiang, Mater. Rev. 29 (2015) 124–131.

    Google Scholar 

  27. T.J. Lu, D.P. He, C.Q. Chen, C.Y. Zhao, D.N. Fang, X.L. Wang, Adv. Mech. 36 (2006) 517–535.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11472098, 12072105, and 11932006) and the Fundamental Research Funds for the Central Universities (No. B200202115 at Hohai University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Dong-hui Yang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiang, K. & Yang, Dh. Compression behavior of metal foams with real pore structures through CT scan images. J. Iron Steel Res. Int. 29, 1886–1897 (2022). https://doi.org/10.1007/s42243-022-00820-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00820-5

Keywords

Navigation