Skip to main content
Log in

Effect of TiO2 on reduction behavior of Cr2O3 in CaO–SiO2–Al2O3–MgO–TiO2–Cr2O3 by carbon from Fe–C melt

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The chromium-bearing titanomagnetite ore will turn to be the important raw material for blast furnace process in Panxi area, China. The reduction behavior of Cr2O3 between CaO–SiO2–Al2O3–TiO2–Cr2O3 and Fe–C systems was investigated. The effect of TiO2 content in the slag system on the reduction of Cr2O3, TiO2, and SiO2 and the consumption of C in hot metal was investigated by both theoretical calculation and physical experiment. The theoretical calculation results reveal that higher reduction temperature promotes the reduction of Cr and Ti, while high basicity and TiO2 content have little influence on the reduction of chromium but significantly influence the reduction of Ti. The smelting reduction experiment results show that the content of Cr in hot metal significantly increases with extending the reduction time and decreases with the increase in TiO2 content. However, the content of Ti in hot metal significantly increases as the TiO2 increases, reaching 0.073, 0.085, 0.107, and 0.121 wt.% for 5, 10, 15, and 20 wt.% of TiO2 input, respectively. Kinetic studies proved that the reduction of Cr2O3 was a first-order reaction. The addition of TiO2 inhibited the reduction of Cr2O3 and resulted in the decrease in reaction rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.S. Zhao, L.N. Wang, T. Qi, D.S. Chen, H.X. Zhao, Y.H. Liu, Hydrometallurgy 149 (2014) 106–109.

    Article  Google Scholar 

  2. C.Y. Wang, M.F. Zhou, Miner. Depos. 48 (2013) 787–798.

    Article  Google Scholar 

  3. S.T. Yang, M. Zhou, T. Jiang, S.F. Guan, W.J. Zhang, X.X. Xue, Int. J. Miner. Metall. Mater. 23 (2016) 1353–1359.

    Article  Google Scholar 

  4. W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, Int. J. Miner. Metall. Mater. 25 (2018) 391–398.

    Article  Google Scholar 

  5. H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, Q.G. Xue, Int. J. Miner. Process. 125 (2013) 122–128.

    Article  Google Scholar 

  6. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, Z.T. Sui, Miner. Eng. 20 (2007) 684–693.

    Article  Google Scholar 

  7. W. Li, N. Wang, G.Q. Fu, M.S. Chu, M.Y. Zhu, Powder Technol. 326 (2018) 137–145.

    Article  Google Scholar 

  8. M. Zhou, S.T. Yang, T. Jiang, X.X. Xue, Ironmak. Steelmak. 42 (2015) 217–225.

    Article  Google Scholar 

  9. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Steel Res. Int. 88 (2017) 1–10.

    Google Scholar 

  10. X.W. Lv, Z.G. Lun, J.Q. Yin, C.G. Bai, ISIJ Int. 53 (2013) 1115–1119.

    Article  Google Scholar 

  11. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, W.J. Wang, Miner. Eng. 24 (2011) 864–869.

    Article  Google Scholar 

  12. L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, T. Qi, Trans. Nonferrous Metal. Soc. 25 (2015) 1325–1333.

    Article  Google Scholar 

  13. Y. Liu, M.F. Jiang, D.Y. Wang, L.X. Xu, Can. Metall. Quart. 51 (2012) 24–30.

    Article  Google Scholar 

  14. T. Takaoka, Y. Kikuchi, Y. Kawai, in: R.A. Bergman (Eds.), Ferrous and non-ferrous alloy processes, Pergamon, Oxford, UK, 1990, pp. 164–176.

    Chapter  Google Scholar 

  15. C. Takano, A.P. Zambrano, A.E.A. Nogueira, M.B. Mourao, Y. Iguchi, ISIJ Int. 47 (2007) 1585–1589.

    Article  Google Scholar 

  16. T. Izawa, H. Katayama, N. Sano, in: Proceedings of the 1st international Chromium Steel and Alloys Congress, Cape Town, Johannesburg, South Africa, 1992, pp. 245–252.

  17. K. Marko, Kinetic study on solid state and smelting reduction of chromite ore, Helsinki University Technology, Finland, 2000.

  18. Y.L. Ding, A.J. Merchant, Ironmak. Steelmak. 26 (1999) 254–261.

    Article  Google Scholar 

  19. Z.S. Zou, L.J. Zhang, A.H. Liu, Z.Q. Xiao, J. Northeast. Univ. (Nat. Sci.) 17 (1996) 356–359.

    Google Scholar 

  20. Y.L. Ding, A.J. Merchant, Ironmak. Steelmak. 26 (1999) 247–253.

    Article  Google Scholar 

  21. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, C.G. Bai, ISIJ Int. 55 (2015) 1367–1376.

    Article  Google Scholar 

  22. W.D. Tang, S.T. Yang, L.H. Zhang, Z. Huang, H. Yang, X.X. Xue, J. Cent. South Univ. 26 (2019) 132–145.

    Article  Google Scholar 

  23. G.Q. Fan, J. Dang, X.W. Lv, M.L. Hu, CrystEngComm 20 (2018) 5422–5431.

    Article  Google Scholar 

  24. R. Hem Shanker, R. Saradindukumar, Kinetics of metallurgical processes, Springer Nature Singapore Pte Ltd., India, 2018.

  25. M. Pourabdoli, S. Raygan, H. Abdizadeh, K. Hanaei, Int. J. Miner. Process. 78 (2006) 175–181.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project funded by China Postdoctoral Science Foundation (Grant No. 2018M640898), the National Key Research and Development Program of China (2018YFC1900500), the National Natural Science Foundation of China (No. 51674055), and the open project funded by State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-yi Xiang or Xue-wei Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Jy., Pei, Gs., Lv, W. et al. Effect of TiO2 on reduction behavior of Cr2O3 in CaO–SiO2–Al2O3–MgO–TiO2–Cr2O3 by carbon from Fe–C melt. J. Iron Steel Res. Int. 27, 1145–1152 (2020). https://doi.org/10.1007/s42243-020-00419-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00419-8

Keywords

Navigation