Skip to main content
Log in

Effect of H2 addition on process of primary slag formation in cohesive zone

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the technology of gas-injection blast furnace (BF), the characteristics of primary slag formation with H2 addition were researched. The results indicate that, compared with traditional BF, the primary melt is formed at a lower temperature, which promotes the deformation of the solid burden particles. With the increase in temperature and H2 content, the quantity of formed melt containing FeO decreases sharply, corresponding to the crystallization of solid 2CaO·SiO2 during reduction. A wider softening range and narrower melting zone could be found in the gas-injection BF with a higher reduction potential. The permeability of burden layer is ameliorated as a result of decreased melt quantity. The influence of H2 on the high-temperature properties of burden is not so conspicuous when the H2 addition is from 10 to 15 vol.% against 5 to 10 vol.%. What is more, the slag shows a better liquidity with the decrease in basicity, owing to the transformation of melt composition from a primary phase field with high melting point to that with low melting point. The process of slag forming in gas-injection BF is characterized by earlier melt formation, less primary slag, higher melting temperature, better permeability and better liquidity, and the phase compositions of primary slag are close to those of final slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.D. Xu. Iron and Steel 45 (2010) No. 3, 1–12.

    Google Scholar 

  2. E.P. da Rocha, V.S. Guiherme, J.A. de Castro, Y. Sazaki, J.I. Yagi, J. Mater. Res. Technol. 2 (2013) 255–262.

    Article  Google Scholar 

  3. K.S. Abdel Halim, J. Iron Steel Res. Int. 20 (2013) No. 9, 40–46.

    Article  Google Scholar 

  4. M.S. Chu, H. Nogami, J.I. Yagi, ISIJ Int. 44 (2004) 801–808.

    Article  Google Scholar 

  5. J.M. Steer, R. Marsh, M. Greenslade, A. Robinson, Fuel 151 (2015) 40–49.

    Article  Google Scholar 

  6. S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, J.A. Lucas, Fuel 143 (2015) 98–106.

    Article  Google Scholar 

  7. C. Wang, M. Larsson, J. Lövgren, L. Nilsson, P. Mellin, W. Yang, H. Salman, A. Hultgren, Energy Procedia 61 (2014) 2184–2187.

    Article  Google Scholar 

  8. W.H. Chen, C.L. Hsu, S.W. Du, Energy 86 (2015) 758–771.

    Article  Google Scholar 

  9. G. Danloy, A. Berthelemot, M. Grant, J. Borlee, D. Sert, J. van der Stel, H. Jak, V. Dimastromatteo, M. Hallin, N. Eklund, N. Edberg, L. Sundqvist, B.E. Sköld, R. Lin, A. Feiterna, B. Korthas, F. Müller, C. Feilmayr, A. Habermann, Rev. Metall. 106 (2009) 1–8.

    Article  Google Scholar 

  10. R. Schott, Iron Steel Technology 10 (2013) No. 3, 63–75.

    Google Scholar 

  11. P. Jin, Z. Jiang, C. Bao, S. Hao, X. Zhang, Resources, Conservation and Recycling 117 (2017) 58–65.

    Article  Google Scholar 

  12. H.B. Luengen, M. Peters, P. Schmöle, Iron Steel Technology 9 (2012) 63–69.

    Google Scholar 

  13. Y.N. Qie, Q. Lyu, J.P. Li, C.C. Lan, X.J. Liu, ISIJ Int. 57 (2017) 404–412.

    Article  Google Scholar 

  14. Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li, S. Liu, Thermochim. Acta 648 (2017) 79–90.

    Article  Google Scholar 

  15. Q. Lü, F.M. Li, X.B. Li, L.F. Sun, Iron and Steel 43 (2008) No. 1, 17–21.

    Google Scholar 

  16. F.M. Li, Q. Lü, X.B. Li, Iron and Steel 42 (2007) No. 5, 12–15.

    Google Scholar 

  17. H. Guo, F.M. Li, Q. Lü, Journal of Hebei Institute of Technology 29 (2007) No. 1, 27–31.

    Google Scholar 

  18. I. Shigaki, S. Shirouchi, K. Tokutake, N. Hasegawa, ISIJ Int. 30 (1990) 199–207.

    Article  Google Scholar 

  19. P.A. Tanskanen, S.M. Huttunen, P.H. Mannila, J.J. Härkki, Ironmak. Steelmak. 29 (2002) 281–286.

    Article  Google Scholar 

  20. T. Nishimura, K. Higuchi, M. Naito, K. Kunitomo, ISIJ Int. 51 (2011) 1316–1321.

    Article  Google Scholar 

  21. M. Matsumura, M. Hoshi, T. Kawaguchi, ISIJ Int. 45 (2005) 594–602.

    Article  Google Scholar 

  22. X.W. An, J.S. Wang, R.Z. Lan, Y.H. Han, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) No. 5, 11–16.

    Article  Google Scholar 

  23. T. Bakker, Softening in the blast furnace process, Delft University of Technology, The Netherlands, 1999.

    Google Scholar 

  24. Y.N. Qie, Q. Lyu, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang, C.J. Yan, Metall. Mater. Trans. B 49 (2018) 2622–2632.

    Article  Google Scholar 

  25. K. Higuchi, M. Naito, M. Nakano, Y. Takamoto, ISIJ Int. 44 (2004) 2057–2066.

    Article  Google Scholar 

  26. C.E. Loo, L.T. Matthews, D.P. O’dea, ISIJ Int. 51 (2011) 930–938.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (U1360205, 51674122) and Iron and Steel Research Foundation of Hebei (E2016209367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-na Qie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qie, Yn., Lyu, Q., Lan, Cc. et al. Effect of H2 addition on process of primary slag formation in cohesive zone. J. Iron Steel Res. Int. 27, 132–140 (2020). https://doi.org/10.1007/s42243-019-00303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00303-0

Keywords

Navigation