Skip to main content

Advertisement

Log in

Effect of volume fraction and mechanical stability of austenite on ductility of medium Mn steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A hot-rolled medium Mn (0.2C5Mn) steel is annealed at 650 °C to produce an ultrafine-grained duplex microstructure with different austenite volume fractions by austenite reverted transformation (ART) annealing, and the orientation relationship strictly obeys K–S orientation relationship before deformation. Tensile tests are carried out in a temperature range from − 196 to 400 °C to examine the effects of the austenite volume fraction and the deformation temperature on the tensile properties and the austenite stability. Microstructural observations reveal that the metastable austenite gradually transformed into α-martensite, which is controlled by the deformation strain, the temperature and the austenite volume fraction. Both strain hardening behavior and ductility of the studied steel are dependent on austenite volume fraction and deformation temperature significantly. The stress–strain curves of ART-annealed 0.2C5Mn steel assume an S shape and a very large work hardening rate of about 10 GPa is obtained at liquid nitrogen deformation temperature. Based on the experimental data, a quantitative relation is proposed to describe the ductility dependence on both the austenite volume fraction and its mechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Quart 60 (1967) 252–259.

    Google Scholar 

  2. W. Bleck, JOM 48 (1996) 26–30.

    Google Scholar 

  3. G. Formmeyer, U. Brux, P. Neumann, ISIJ Int. 43 (2003) 438–446.

    Google Scholar 

  4. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8 (2004) 285–303.

    Google Scholar 

  5. E.J. Seo, L. Cho, B.C. De Cooman, Metall. Mater. Trans. A 45 (2014) 4022–4037.

    Google Scholar 

  6. T.B. Hilditch, I.B. Timokhina, L.T. Robertson, E.V. Pereloma, P.D. Hodgson, Metall. Mater. Trans. A 40 (2009) 342–353.

    Google Scholar 

  7. O. Graessel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.

    Google Scholar 

  8. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141–168.

    Google Scholar 

  9. W.Q. Cao, J. Shi, C. Wang, C.Y. Wang, L. Xu, M.Q. Wang, Y.Q. Weng, H. Dong, in: The 3rd Generation Automobile Steels Presenting with Ultrahigh Strength and High Ductility. Advanced Steel: The Recent Scenario in Steel Science and Technology, Metallurgical Industry Press, Beijing, China, 2011, pp. 209–227.

  10. D.W. Suh, S.J. Kim, Scripta Mater. 126 (2017) 63–67.

    Google Scholar 

  11. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35 (2004) 2331–2341.

    Google Scholar 

  12. J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, W.Q. Cao, Scripta Mater. 63 (2010) 815–818.

    Google Scholar 

  13. C. Herrera, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 4653–4664.

    Google Scholar 

  14. H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59 (2011) 4002–4014.

    Google Scholar 

  15. G. Reisner, E.A. Werner, P. Kerschbaummayr, I. Papst, F.D. Fischer, JOM 49 (1997) 62–65.

    Google Scholar 

  16. S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52 (2004) 2765–2778.

    Google Scholar 

  17. R. Blonde, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Bruck, S. van der Zwaag, N.H. van Dijk, Acta Mater. 60 (2011) 565–577.

    Google Scholar 

  18. O. Bouaziz, H. Zurob, M.X. Huang, Steel Res. Int. 84 (2013) 937–947.

    Google Scholar 

  19. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52 (2004) 2005–2012.

    Google Scholar 

  20. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.

    Google Scholar 

  21. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, Mater. Sci. Eng. A 387-389 (2004) 158–162.

    Google Scholar 

  22. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Google Scholar 

  23. D.K. Matlock, J.G. Speer, in: A. Haldar, S. Suwas, D. Bhattacharjee (Eds.), Third Generation of AHSS: Microstructure Design Concepts, Microstructure and Texture in Steels, Springer, London, UK, 2009, pp. 185–205.

  24. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, W.Q. Cao, ISIJ Int. 51 (2011) 651–656.

    Google Scholar 

  25. Y.K. Lee, J. Han, Mater. Sci. Technol. 31 (2015) 843–856.

    Google Scholar 

  26. J. Chiang, B. Lawrence, J.D. Boy, Mater. Sci. Eng. A 528 (2011) 4516–4521.

    Google Scholar 

  27. P.J. Jacques, F. Delannay, J. Ladriere, Metall. Mater. Trans. A 32 (2001) 2759–2768.

    Google Scholar 

  28. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42 (2011) 3691–3702.

    Google Scholar 

  29. Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84 (2015) 229–236.

    Google Scholar 

  30. G.N. Haidemenopoulos, A.N. Vasilakos, Steel Res. Int. 67 (1996) 513–519.

    Google Scholar 

  31. A.N. Vasilakos, K. Pagamantellos, G.N. Haidemenopoulos, W. Bleck, Steel Res. Int. 70 (1999) 466–471.

    Google Scholar 

  32. W.Q. Cao, C. Wang, C.Y. Wang, J. Shi, M.Q. Wang, H. Dong, Y.Q. Weng, Sci. China Technol. Sci. 55 (2012) 1814–1822.

    Google Scholar 

  33. C. Wang, W.Q. Cao, J. Shi, C.X. Huang, H. Dong, Mater. Sci. Eng. A 562 (2013) 89–95.

    Google Scholar 

  34. K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32 (1992) 1311–1318.

    Google Scholar 

  35. M.Y. Sherif, C. Garcia Mateo, T. Sourmail, Mater. Sci. Technol. 20 (2004) 319–322.

    Google Scholar 

  36. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55 (2007) 6713–6723.

    Google Scholar 

  37. S. Lee, S.J. Lee, B.C. De Cooman, Scripta Mater. 65 (2011) 225–228.

    Google Scholar 

  38. M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86 (2015) 182–192.

    Google Scholar 

  39. H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, S. Lee, Acta Mater. 1476 (2018) 247–260.

    Google Scholar 

  40. P. Jacques, Q. Furnemont, A. Mertens, F. Delannay, Philos. Mag. A 81 (2001) 1789–1812.

    Google Scholar 

  41. S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124–131.

    Google Scholar 

  42. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, E. Patoor, Mater. Sci. Eng. A 378 (2004) 304–307.

    Google Scholar 

  43. A. Perlade, O. Bouaziz, Q. Furnemont, Mater. Sci. Eng. A 356 (2003) 145–152.

    Google Scholar 

  44. G. Ghosh, G.B. Olson, Acta Metall. Mater. 42 (1994) 3361–3370.

    Google Scholar 

Download references

Acknowledgements

This research was supported by both National Natural Science Foundation of China (NSFC, Nos. 51871062, 51371057 and 11672195) and MNSF of Beijing (No. 2182088). Chong-xiang Huang acknowledged Sichuan Youth Science and Technology Foundation (No. 2016JQ0047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-quan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sl., Cao, Zx., Wang, C. et al. Effect of volume fraction and mechanical stability of austenite on ductility of medium Mn steel. J. Iron Steel Res. Int. 26, 1209–1218 (2019). https://doi.org/10.1007/s42243-019-00267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00267-1

Keywords

Navigation