Skip to main content

Advertisement

Log in

Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the extended application of COMSOL multiphysics, a novel dual heat source model for pulsed laser–gas tungsten arc (GTA) hybrid welding was established. This model successfully solved the problem of simulation inaccuracy caused by energy superposition effect between laser and arc due to their different physical characteristics. Numerical simulation for pulsed laser–GTA hybrid welding of magnesium alloy process was conducted, and the simulation indicated good agreements with the measured thermal cycle curve and the shape of weld beads. Effects of pulse laser parameters (laser-excited current, pulse duration, and pulse frequency) on the temperature field and weld pool morphology were investigated. The experimental and simulation results suggest that when the laser pulse energy keeps constant, welding efficiency of the hybrid heat source is increased by increasing laser current or decreasing pulse duration due to the increased ratio of the weld bead depth to width. With large laser currents, severe spatters tend to occur. For optimized welding process, the laser current should be controlled in the range of 150–175 A, the pulse duration should be longer than 1 ms, and the pulse frequency should be equal to or slightly greater than 20 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G. Song, J. Wang, J.W. Yu, L.M. Liu, Trans. China Weld. Inst. 37 (2016) No. 5, 69–72.

    Google Scholar 

  2. L.M. Liu, M.S. Chi, J.F. Wang, Mater. Mech. Eng. A 42 (2006) 82–86.

    Google Scholar 

  3. J. Shen, S. Li, D.J. Zhai, L.B. Wen, K. Liu, Y.C. Dai, Mater. Manuf. Process. 28 (2013) 1240–1247.

    Article  Google Scholar 

  4. L.M. Liu, G. Song, G.L. Liang, J.F. Wang, Mater. Sci. Eng. A 390 (2005) 76–80.

    Article  Google Scholar 

  5. X. Xie, J. Shen, F.B. Gong, D. Wu, T. Zhang, X. Luo, Y. Li, Adv. Manuf. Technol. 82 (2016) 75–83.

    Article  Google Scholar 

  6. C. Shan, G. Song, L.M. Liu, Trans. China Weld. Inst. 29 (2008) No. 6, 57–60.

    Google Scholar 

  7. X.D. Qi ,G. Song, Mater. Des. 31 (2010) 605–609.

    Article  Google Scholar 

  8. X.D. Qi, L.M. Liu, J. Mater. Sci. 44 (2009) 5725–5731.

    Article  Google Scholar 

  9. M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng, J. Mater. Process. Technol. 212 (2012) 1338–1346.

    Article  Google Scholar 

  10. G. Casalino, S.L. Campanelli, A.D. Ludovico, Int. J. Adv. Manuf. Technol. 68 (2013) 209–216.

    Article  Google Scholar 

  11. J. Chen, C.S. Wu, M.A. Chen, Mater. Manuf. Process. 16 (2014) 485–493.

    Article  Google Scholar 

  12. L.M. Liu, M.S. Chi, J.F. Wang, Mater. Mech. Eng. 42 (2006) No. 2, 82–86.

    Article  Google Scholar 

  13. R.S. Huang, L.M. Liu, G. Song, Mater. Sci. Eng. A 447 (2007) 239–243.

    Article  Google Scholar 

  14. G. Song, Z.M. Luo, Opt. Laser Eng. 49 (2011) 82–88.

    Article  Google Scholar 

  15. X.H. Zhan, Y.B. Li, W.M. Ou, F.Y. Yu, J. Chen, Y.H. Wei. Opt. Laser Technol. 85 (2016) 75–84.

    Article  Google Scholar 

  16. L.C. Mo, B.N. Qian, X.M. Guo, S.F. Yu, Trans. China Weld. Inst. 22 (2001) No. 3, 93–96.

    Google Scholar 

  17. Y.B. Chen, L.Q. Li, J.F. Fang, X.S. Feng, L. Wu, China Weld. 12 (2003) No. 1, 62–66.

    Google Scholar 

  18. C. Carmignani, R. Mares, G. Tosell, Comput. Method Appl. Mech. Eng. 179 (1999) 197–217.

    Article  Google Scholar 

  19. B. Tan, H.L. Zhang, D.G. Chen, G. Qi, J.C. Feng, C.F. Chen, Ordnance Mater. Sci. Eng. 33 (2010) No. 2, 55–58.

    Google Scholar 

  20. V. Pavelic, Weld. J. 48 (1969) 295–305.

    Google Scholar 

  21. S. Wu, H.Y. Zhao, Y. Wang, X.H. Zhang, J. Trans. China Weld. Inst. 25 (2004) No. 1, 92–95.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province of China (Grant Nos. 201602391 and 20170540460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-lin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Zl., Liu, Lm., Lv, Xz. et al. Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy. J. Iron Steel Res. Int. 25, 995–1002 (2018). https://doi.org/10.1007/s42243-018-0122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0122-3

Keywords

Navigation