Skip to main content
Log in

Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The slippery liquid-infused porous surface(s) (SLIPS) that imitates the Nepenthes pitcher plant has proven to be highly versatile and can be combined with various surface characteristics such as dynamic response, antifouling, selective adhesion, and optical/mechanical tunability. In addition, the introduction of a lubricating fluid layer also gives it extremely low contact angle hysteresis and self-repairing properties, which further expands its application range. Currently, SLIPS has been proven to be suitable for many frontier fields such as aerospace, communications, biomedicine, and microfluidic manipulation. In this review, we explain the theoretical background of SLIPS and the preparation methods currently available, including the choice of substrate materials and lubricants, and we discuss the design parameters of the liquid injection surface and how to deal with the consumption of lubricants in practical applications. In addition, the paper focuses on current and potential applications, such as preventing pathogen contamination of and blood adhesion of medical equipment, manipulation of tiny droplets, and directional transportation of liquids. Finally, some weaknesses that appear when SLIPS is used in these applications are pointed out, which provides a new perspective for the development of SLIPS in the future.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. https://doi.org/10.1007/s004250050096

    Article  Google Scholar 

  2. Sun T, Feng L, Gao X et al (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652. https://doi.org/10.1021/ar040224c

    Article  Google Scholar 

  3. Gangadoo S, Chandra S, Power A et al (2016) Biomimetics for early stage biofouling prevention: templates from insect cuticles. J Mater Chem B 4:5747–5754. https://doi.org/10.1039/C6TB01642A

    Article  Google Scholar 

  4. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1):1–108. https://doi.org/10.1016/j.pmatsci.2010.04.003

    Article  Google Scholar 

  5. Si Y, Zhu H, Chen L et al (2015) A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties. Chem Commun 51:16794–16797. https://doi.org/10.1039/C5CC06977G

    Article  Google Scholar 

  6. Lu Y, Sathasivam S, Song J et al (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135. https://doi.org/10.1126/science.aaa0946

    Article  Google Scholar 

  7. Milles S, Soldera M, Kuntze T et al (2020) Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning. Appl Surf Sci 525:146518. https://doi.org/10.1016/j.apsusc.2020.146518

    Article  Google Scholar 

  8. Bhushan B, Martin S (2018) Substrate-independent superliquiphobic coatings for water, oil, and surfactant repellency: an overview. J Colloid Interf Sci 526:90–105. https://doi.org/10.1016/j.jcis.2018.04.103

    Article  Google Scholar 

  9. Martin S, Brown PS, Bhushan B (2017) Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency. Adv Colloid Interf Sci 241:1–23. https://doi.org/10.1016/j.cis.2017.01.004

    Article  Google Scholar 

  10. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3:671–690. https://doi.org/10.1039/C2RA21260A

    Article  Google Scholar 

  11. Fu JJ, Chen T, Wang MD et al (2013) Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 7(12):11397–11408. https://doi.org/10.1021/nn4053233

    Article  Google Scholar 

  12. Bhushan B, Multanen V (2019) Designing liquid repellent, icephobic and self-cleaning surfaces with high mechanical and chemical durability. Phil Trans R Soc A 377(2138):20180270. https://doi.org/10.1098/rsta.2018.0270

    Article  Google Scholar 

  13. Cremaldi J, Bhushan B (2018) Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways. J Colloid Interf Sci 518:284–297. https://doi.org/10.1016/j.jcis.2018.02.034

    Article  Google Scholar 

  14. Nanda D, Varshney P, Satapathy M et al (2017) Single step method to fabricate durable superliquiphobic coating on aluminum surface with self-cleaning and anti-fogging properties. J Colloid Interf Sci 507:397–409. https://doi.org/10.1016/j.jcis.2017.08.022

    Article  Google Scholar 

  15. Amini S, Kolle S, Petrone L (2017) Preventing mussel adhesion using lubricant-infused materials. Science 357(6352):668–673. https://doi.org/10.1126/science.aai8977

    Article  Google Scholar 

  16. Cameron SW, Smith-Palmer T, Peppou-Chapman S et al (2018) Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl Mater Interf 10(4):4173–4182. https://doi.org/10.1021/acsami.7b14736

    Article  Google Scholar 

  17. Li H, Shkolyar E, Wang J et al (2020) SLIPS-LAB—a bioinspired bioanalysis systemfor metabolic evaluation of urinary stone disease. Sci Adv 6(21):eaba8535. https://doi.org/10.1126/sciadv.aba8535

    Article  Google Scholar 

  18. Epstein AK, Wong T, Belisle RA et al (2012) Liquid-infused structured surfaces with exceptional anti-biofouling performance. PNAS 109(33):13182–13187. https://doi.org/10.1073/pnas.1201973109

    Article  Google Scholar 

  19. Maccallum N, Howell C, Kim P et al (2015) Liquid-infused silicone as a biofouling-free medical material. ACS Biomater Sci Eng 1(1):43–51. https://doi.org/10.1021/ab5000578

    Article  Google Scholar 

  20. Badv M, Jaffer IH, Weitz JI et al (2017) An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces. Sci Rep 7:11639. https://doi.org/10.1038/s41598-017-12149-1

    Article  Google Scholar 

  21. Goudie MJ, Pant J, Handa H (2017) Liquid-infused nitric oxide-releasing (LINORel) silicone for decreased fouling, thrombosis, and infection of medical devices. Sci Rep 7:13623. https://doi.org/10.1038/s41598-017-14012-9

    Article  Google Scholar 

  22. Manna U, Raman N, Welsh MA et al (2016) Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach. Adv Funct Mater 26(21):3599–3611. https://doi.org/10.1002/adfm.201505522

    Article  Google Scholar 

  23. Wong TS, Kang S, Tang S et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365):443–447. https://doi.org/10.1038/nature10447

    Article  Google Scholar 

  24. Jung S, Tiwari M, Doan N et al (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:615. https://doi.org/10.1038/ncomms1630

    Article  Google Scholar 

  25. Grace M, Gao L, Stephen Y et al (2019) Clinical potential of immobilized liquid interfaces: perspectives on biological interactions. Trends Biotechnol 37(3):268–280. https://doi.org/10.1016/j.tibtech.2018.08.003

    Article  Google Scholar 

  26. Young T (1805) An essay on the cohesion of fluidsPhil. Trans R Soc 95:65–87. https://doi.org/10.1098/rstl.1805.0005

    Article  Google Scholar 

  27. Liu J, Fang X, Zhu C et al (2020) Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: a comprehensive review. Colloid Surf A Physicochem Eng Asp 607:125498. https://doi.org/10.1016/j.colsurfa.2020.125498

    Article  Google Scholar 

  28. Villegas M, Zhang Y, Abu Jarad N et al (2019) Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 13(8):8517–8536. https://doi.org/10.1021/acsnano.9b04129

    Article  Google Scholar 

  29. Lee K, Kim YS, Shin K (2012) Hierarchically-structured artificial water-repellent leaf surfaces replicated from reusable anodized aluminum oxide. Macromol Res 20:762–767. https://doi.org/10.1007/s13233-012-0111-5

    Article  Google Scholar 

  30. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024

    Article  Google Scholar 

  31. Valipour MN, Birjandi FC, Sargolzaei J (2014) Super-non-wettable surfaces: a review. Colloid Surf A Physicochem Eng Aspects 448:93–106. https://doi.org/10.1016/j.colsurfa.2014.02.016

    Article  Google Scholar 

  32. Yong J, Chen F, Yang Q et al (2017) Superoleophobic surfaces. Chem Soc Rev 46(14):4168–4217. https://doi.org/10.1039/C6CS00751A

    Article  Google Scholar 

  33. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/TF9444000546

    Article  Google Scholar 

  34. Bhushan B (2019) Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces. Phil Trans R Soc A 377(2138):20180274. https://doi.org/10.1098/rsta.2018.0274

    Article  Google Scholar 

  35. Gou X, Guo Z (2019) Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Adv Colloid Interf Sci 269:87–121. https://doi.org/10.1016/j.cis.2019.04.007

    Article  Google Scholar 

  36. Shao Y, Zhao J, Fan Y et al (2020) Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect.” Chem Eng J 382:122989. https://doi.org/10.1016/j.cej.2019.122989

    Article  Google Scholar 

  37. Cao M, Guo D, Yu C et al (2016) Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: a brief study on the functions and applications. ACS Appl Mater Interf 8(6):3615–3623. https://doi.org/10.1021/acsami.5b07881

    Article  Google Scholar 

  38. Liu M, Wang S, Wei Z et al (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21(6):665–669. https://doi.org/10.1002/adma.200801782

    Article  Google Scholar 

  39. Cai Y, Lin L, Xue Z et al (2014) Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv Funct Mater 24(6):809–816. https://doi.org/10.1002/adfm.201302034

    Article  Google Scholar 

  40. Parker A, Lawrence C (2001) Water capture by a desert beetle. Nature 414:33–34. https://doi.org/10.1038/35102108

    Article  Google Scholar 

  41. Garrod RP, Harris LG, Schofield WCE et al (2007) Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23(2):689–693. https://doi.org/10.1021/la0610856

    Article  Google Scholar 

  42. Hou Y, Yu M, Chen X et al (2015) Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 9(1):71–81. https://doi.org/10.1021/nn505716b

    Article  Google Scholar 

  43. Holger F, Bohn WF (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS 101(39):14138–14143. https://doi.org/10.1073/pnas.0405885101

    Article  Google Scholar 

  44. Wang P, Lu Z, Zhang D (2015) Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corros Sci 93:159–166. https://doi.org/10.1016/j.corsci.2015.01.015

    Article  Google Scholar 

  45. Shi Z, Xiao Y, Qiu R et al (2017) A facile and mild route for fabricating slippery liquid-infused porous surface (SLIPS) on CuZn with corrosion resistance and self-healing properties. Surf Coat Technol 330:102–112. https://doi.org/10.1016/j.surfcoat.2017.09.053

    Article  Google Scholar 

  46. Barati Darband Gh, Aliofkhazraei M, Khorsand S et al (2020) Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arab J Chem 13(1):1763–1802. https://doi.org/10.1016/j.arabjc.2018.01.013

    Article  Google Scholar 

  47. Chen L, Guo Z, Liu W (2017) Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. J Mater Chem A 5:14480–14507. https://doi.org/10.1039/C7TA03248J

    Article  Google Scholar 

  48. Wang S, Liu K, Yao X et al (2015) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115(16):8230–8293. https://doi.org/10.1021/cr400083y

    Article  Google Scholar 

  49. Kim P, Kreder MJ, Alvarenga J et al (2013) Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13(4):1793–1799. https://doi.org/10.1021/nl4003969

    Article  Google Scholar 

  50. Rykaczewski K, Paxson A, Staymates M et al (2014) Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci Rep 4:4158. https://doi.org/10.1038/srep04158

    Article  Google Scholar 

  51. Grynyov R, Bormashenko E, Whyman G et al (2016) Superoleophobic surfaces obtained via hierarchical metallic meshes. Langmuir 32(17):4134–4140. https://doi.org/10.1021/acs.langmuir.6b00248

    Article  Google Scholar 

  52. Starostin A, Valtsifer V, Strelnikov V et al (2014) Robust technique allowing the manufacture of superoleophobic (omniphobic) metallic surfaces. Adv Eng Mater 16(9):1127–1132. https://doi.org/10.1002/adem.201300561

    Article  Google Scholar 

  53. Ellinas K, Chatzipetrou M, Zergioti I et al (2015) Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high- and low-surface-tension mixtures, tested with laser-induced forward transfer of drops. Adv Mater 27(13):2231–2235. https://doi.org/10.1002/adma.201405855

    Article  Google Scholar 

  54. Boreyko JB, Polizos G, Datskos PG et al (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc Natl Acad Sci USA 111(21):7588–7593. https://doi.org/10.1073/pnas.1400381111

    Article  Google Scholar 

  55. He W, Liu P, Jiang J et al (2018) Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites. J Mater Chem A 6:4199–4208. https://doi.org/10.1039/C7TA10780C

    Article  Google Scholar 

  56. Zhao H, Park KC, Law KY (2012) Effect of surface texturing on superoleophobicity, contact angle hysteresis, and “robustness.” Langmuir 28(42):14925–14934. https://doi.org/10.1021/la302765t

    Article  Google Scholar 

  57. Chen J, Long M, Peng S et al (2017) Superamphiphobic aluminum surfaces that maintain robust stability after undergoing severe chemical and physical damage. N J Chem 41(3):1334–1345. https://doi.org/10.1039/C6NJ03696A

    Article  Google Scholar 

  58. Sun Y, Wang L, Gao Y et al (2015) Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization. Appl Surf Sci 324:825–830. https://doi.org/10.1016/j.apsusc.2014.11.047

    Article  Google Scholar 

  59. Hao L, Yu S, Han X et al (2015) Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate. Mater Des 85:653–660. https://doi.org/10.1016/j.matdes.2015.07.057

    Article  Google Scholar 

  60. Liu Y, Zhao L, Lin J et al (2019) Electrodeposited surfaces with reversibly switching interfacial properties. Sci Adv 5(11):eaax0380. https://doi.org/10.1126/sciadv.aax0380

    Article  Google Scholar 

  61. Liu Q, Yang Y, Huang M et al (2015) Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Appl Surf Sci 346:68–76. https://doi.org/10.1016/j.apsusc.2015.02.051

    Article  Google Scholar 

  62. Hou L, Wang N, Wu J et al (2018) Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater 28:1801114. https://doi.org/10.1002/adfm.201801114

    Article  Google Scholar 

  63. Lee MW, An S, Latthe SS et al (2013) Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. Appl Mater Interf 5(21):10597–10604. https://doi.org/10.1021/am404156k

    Article  Google Scholar 

  64. Doll K, Fadeeva E, Schaeske J et al (2017) Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties. ACS Appl Mater Interf 9(11):9359–9368. https://doi.org/10.1021/acsami.6b16159

    Article  Google Scholar 

  65. Doll K, Yang I, Fadeeva E et al (2019) Liquid-infused structured titanium surfaces: antiadhesive mechanism to repel streptococcus oralis biofilms. ACS Appl Mater Interf 11(26):23026–23038. https://doi.org/10.1021/acsami.9b06817

    Article  Google Scholar 

  66. Hosseini A, Villegas M, Yang J et al (2018) Conductive electrochemically active lubricant-infused nanostructured surfaces attenuate cagulation and enable friction-less droplet manipulation. Adv Mater Interf 5:1800617. https://doi.org/10.1002/admi.201800617

    Article  Google Scholar 

  67. Zouaghi S, Six T, Bellayer S et al (2017) Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing. ACS Appl Mater Interf 9(31):26565–26573. https://doi.org/10.1021/acsami.7b06709

    Article  Google Scholar 

  68. Ouyang Y, Zhao J, Qiu R et al (2020) Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel. Surf Coat Technol 381:125143. https://doi.org/10.1016/j.surfcoat.2019.125143

    Article  Google Scholar 

  69. Ouyang Y, Zhao J, Qiu R et al (2019) Liquid infused surface based on hierarchical dendritic iron wire array: an exceptional barrier to prohibit biofouling and biocorrosion. Prog Org Coat 136:105216. https://doi.org/10.1016/j.porgcoat.2019.105216

    Article  Google Scholar 

  70. Awad TS, Asker D, Hatton BD (2018) Food-safe modification of stainless steel food-processing surfaces to reduce bacterial biofilms. ACS Appl Mater Interf 10(27):22902–22912. https://doi.org/10.1021/acsami.8b03788

    Article  Google Scholar 

  71. Ma Q, Wang W, Dong G (2019) Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning, anti-corrosion, anti-frosting and tribological properties. Colloid Surf A Physicochem Eng Asp 577:17–26. https://doi.org/10.1016/j.colsurfa.2019.05.008

    Article  Google Scholar 

  72. Sousa MFB, Loureiro HC, Bertran CA (2020) Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel. Surf Coat Technol 382:125160. https://doi.org/10.1016/j.surfcoat.2019.125160

    Article  Google Scholar 

  73. Ouyang Y, Zhao J, Qiu R et al (2019) Biomimetics leading to liquid-infused surface based on vertical dendritic Co matrix: a barrier to inhibit bioadhesion and microbiologically induced corrosion. Colloid Surf A: Physicochem Eng Asp 583:124006. https://doi.org/10.1016/j.colsurfa.2019.124006

    Article  Google Scholar 

  74. Liu C, Li Y, Lu C et al (2020) Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl Mater Interf 12(22):25471–25477. https://doi.org/10.1021/acsami.0c05954

    Article  Google Scholar 

  75. Jiang D, Xia X, Hou J et al (2019) A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chem Eng J 373:285–297. https://doi.org/10.1016/j.cej.2019.05.046

    Article  Google Scholar 

  76. Subramanyam SB, Azimi G, Varanasi KK (2014) Designing lubricant-impregnated textured surfaces to resist scale formation. Adv Mater Interf 1:1300068. https://doi.org/10.1002/admi.201300068

    Article  Google Scholar 

  77. Guo H, Fuchs P, Casdorff K et al (2017) Bio-inspired superhydrophobic and omniphobic wood surfaces. Adv Mater Interf 4:1600289. https://doi.org/10.1002/admi.201600289

    Article  Google Scholar 

  78. Wang J, Lu Y, Chu Q et al (2020) Facile construction of superhydrophobic surfaces by coating fluoroalkylsilane/silica composite on a modified hierarchical structure of wood. Polymers 12(4):813. https://doi.org/10.3390/polym12040813

    Article  Google Scholar 

  79. Vena A, Kolle S, Stafslien S et al (2020) Self-stratifying porous silicones with enhanced liquid infusion and protective skin layer for biofouling prevention. Adv Mater Interf 8:2000359. https://doi.org/10.1002/admi.202000359

    Article  Google Scholar 

  80. Basu S, Hanh BM, Isaiah Chua JQ et al (2020) Green biolubricant infused slippery surfaces to combat marine biofouling. J Colloid Interf Sci 568:185–197. https://doi.org/10.1016/j.jcis.2020.02.049

    Article  Google Scholar 

  81. Yong J, Chen F, Yang Q et al (2017) Nepenthes inspired design of self-repairing mmniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Adv Mater Interf 4:1700552. https://doi.org/10.1002/admi.201700552

    Article  Google Scholar 

  82. Manna U, Lynn DM (2015) Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv Mater 27(19):3007–3012. https://doi.org/10.1002/adma.201500893

    Article  Google Scholar 

  83. Agrawal P, Salomons TT, Chiriac DS et al (2019) Facile actuation of organic and aqueous droplets on slippery liquid-infused porous surfaces for the application of on-chip polymer synthesis and liquid-liquid extraction. ACS Appl Mater Interf 11(31):28327–28335. https://doi.org/10.1021/acsami.9b08849Error!Hyperlinkreferencenotvalid

    Article  Google Scholar 

  84. Howell C, Vu TL, Johnson CP et al (2015) Stability of surface-immobilized lubricant interfaces under flow. Chem Mater 27(5):1792–1800. https://doi.org/10.1021/cm504652g

    Article  Google Scholar 

  85. Sett S, Yan X, Barac G et al (2017) Lubricant-infused surfaces for low-surface-tension fluids: promise versus reality. ACS Appl Mater Interf 9(41):36400–36408. https://doi.org/10.1021/acsami.7b10756

    Article  Google Scholar 

  86. Peppou-Chapman S, Hong JK, Waterhouse A et al (2020) Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 49(11):3688–3715. https://doi.org/10.1039/D0CS00036A

    Article  Google Scholar 

  87. Tian X, Banerjee S, Gonzalez-Alfonzo I et al (2020) Suppressing evaporative loss in slippery liquid-infused porous surfaces (SLIPS) with self-suspended perfluorinated nanoparticles. Langmuir 36(19):5106–5111. https://doi.org/10.1021/acs.langmuir.0c00160

    Article  Google Scholar 

  88. Rao Q, Zhang J, Zhan X et al (2020) UV-driven self-replenishing slippery surfaces with programmable droplet-guiding pathways. J Mater Chem A 8:2481–2489. https://doi.org/10.1039/C9TA11723G

    Article  Google Scholar 

  89. Zhao H, Sun Q, Deng X et al (2018) Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Adv Mater 30:1802141. https://doi.org/10.1002/adma.201802141

    Article  Google Scholar 

  90. Zhang D, Xia Y, Chen X et al (2019) PDMS-infused poly(high internal phase emulsion) templates for the construction of slippery liquid-infused porous surfaces with self-cleaning and self-repairing properties. Langmuir 35(25):8276–8284. https://doi.org/10.1021/acs.langmuir.9b01115

    Article  Google Scholar 

  91. Jing X, Guo Z (2019) Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale 11(18):8870–8881. https://doi.org/10.1039/C9NR01556F

    Article  Google Scholar 

  92. Meuler AJ, McKinley GH, Cohen RE (2010) Exploiting topographical texture to impart icephobicity. ACS Nano 4:7048–7052. https://doi.org/10.1021/nn103214q

    Article  Google Scholar 

  93. Kim P, Wong T-S, Alvarenga J et al (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6(8):6569–6577. https://doi.org/10.1021/nn302310q

    Article  Google Scholar 

  94. Vazirinasab E, Maghsoudi K, Jafari R et al (2020) A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies. J Mater Process Technol 276:116415. https://doi.org/10.1016/j.jmatprotec.2019.116415

    Article  Google Scholar 

  95. Latthe SS, Sutar RS, Bhosale AK et al (2019) Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Prog Org Coat 137:105373. https://doi.org/10.1016/j.porgcoat.2019.105373

    Article  Google Scholar 

  96. Zhao L, He L, Liang J et al (2020) Facile preparation of a slippery oil-infused polymer surface for robust icephobicity. Prog Org Coat 148:105849. https://doi.org/10.1016/j.porgcoat.2020.105849

    Article  Google Scholar 

  97. Tourkine P, Merrer ML, Quere D (2009) Delayed freezing on water repellent materials. Langmuir 25(13):7214–7216. https://doi.org/10.1021/la900929u

    Article  Google Scholar 

  98. Jung S, Dorrestijn M, Raps D et al (2011) Are superhydrophobic surfaces best for icephobicity? Langmuir 27(6):3059–3066. https://doi.org/10.1021/la104762g

    Article  Google Scholar 

  99. Chen J, Liu J, He M et al (2012) Superhydrophobic surfaces cannot reduce ice adhesion. Appl Phys Lett 101:111603. https://doi.org/10.1063/1.4752436

    Article  Google Scholar 

  100. Wilson PW, Lu W, Xu H et al (2013) Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys Chem Chem Phys 15(2):581–585. https://doi.org/10.1039/C2CP43586A

    Article  Google Scholar 

  101. Juuti P, Haapanen J, Stenroos C et al (2017) Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Appl Phys Lett 110:161603. https://doi.org/10.1063/1.4981905

    Article  Google Scholar 

  102. Long Y, Yin X, Mu P et al (2020) Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates. Chem Eng J 401:126137. https://doi.org/10.1016/j.cej.2020.126137

    Article  Google Scholar 

  103. Li J, Feng X, Liu B et al (2017) Polymer materials for prevention of postoperative adhesion. Acta Biomater 61:21–40. https://doi.org/10.1016/j.actbio.2017.08.002

    Article  Google Scholar 

  104. Leslie DC, Waterhouse A, Berthet JB et al (2014) A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 32(11):1134–1140. https://doi.org/10.1038/nbt.3020

    Article  Google Scholar 

  105. Yuan S, Luan S, Yan S et al (2015) Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl Mater Interf 7(34):19466–19473. https://doi.org/10.1021/acsami.5b05865

    Article  Google Scholar 

  106. Badv M, Imani SM, Weitz JI et al (2018) Lubricant-infused surfaces with built-in functional biomolecules exhibit simultaneous repellency and tunable cell adhesion. ACS Nano 12(11):10890–10902. https://doi.org/10.1021/acsnano.8b03938

    Article  Google Scholar 

  107. Howell C, Grinthal A, Sunny S et al (2018) Designing liquid-infused surfaces for medical applications: a review. Adv Mater 30(50):e1802724. https://doi.org/10.1002/adma.201802724

    Article  Google Scholar 

  108. Zou M, Zhao X, Zhang X et al (2020) Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair. Chem Eng J 398:125563. https://doi.org/10.1016/j.cej.2020.125563

    Article  Google Scholar 

  109. Beyzavi A, Nguyen N-T (2010) Programmable two-dimensional actuation of ferrofluid droplet using planar microcoils. J Micromech Microeng 20(1):015018. https://doi.org/10.1088/0960-1317/20/1/015018

    Article  Google Scholar 

  110. Luo JT, Geraldi NR, Guan JH et al (2017) Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves. Phys Rev Appl 7:014017. https://doi.org/10.1103/PhysRevApplied.7.014017

    Article  Google Scholar 

  111. Ting TH, Yap YF, Nguyen NT et al (2006) Thermally mediated breakup of drops in microchannels. Appl Phys Lett 89:234101. https://doi.org/10.1063/1.2400200

    Article  Google Scholar 

  112. Gao W, Wang J, Zhang X et al (2020) Electric-tunable wettability on a paraffin-infused slippery pattern surface. Chem Eng J 381:122612. https://doi.org/10.1016/j.cej.2019.122612

    Article  Google Scholar 

  113. Chen C, Huang Z, Jiao Y et al (2019) In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage. ACS Nano 13(5):5742–5752. https://doi.org/10.1021/acsnano.9b01180

    Article  Google Scholar 

  114. Guo T, Che P, Heng L et al (2016) Anisotropic slippery surfaces: electric-driven smart control of a drop’s slide. Adv Mater 28(32):6999–7007. https://doi.org/10.1002/adma.201601239

    Article  Google Scholar 

  115. Hou G, Cao M, Yu C et al (2017) Foolproof method for fast and reversible switching of water-droplet adhesion by magnetic gradients. ACS Appl Mater Interf 9(27):23238–23245. https://doi.org/10.1021/acsami.7b07409

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51735013)

Author information

Authors and Affiliations

Authors

Contributions

XZ was involved in conceptualization, writing—original draft, and visualization. ZG and WL helped in writing—review and editing. WL contributed to supervision.

Corresponding author

Correspondence to Zhiguang Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Guo, Z. & Liu, W. Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature. Bio-des. Manuf. 4, 506–525 (2021). https://doi.org/10.1007/s42242-021-00133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00133-8

Keywords

Navigation