Skip to main content
Log in

Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The organized alignment of cells in various tissues plays a significant role in the maintenance of specific functions. To induce such an alignment, ideal scaffolds should simulate the characteristics and morphologies of natural tissues. Aligned structures that guide cell orientation are used to facilitate tissue regeneration and repair. We here review how various aligned structures are fabricated, including aligned electrospun nanofibers, aligned porous or channeled structures, micropatterns and combinations thereof, and their application in nerve, skeletal muscle, tendon, and tubular dentin regeneration. The future use of aligned structures in tissue engineering is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morimoto Y, Takeuchi S (2017) In vitro construction of skeletal muscle tissues. Clin Calcium 27(3):383–389

    Google Scholar 

  2. Serbo JV, Gerecht S (2013) Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res Ther 4(1):8. https://doi.org/10.1186/scrt156

    Article  Google Scholar 

  3. Thompson DM, Buettner HM (2006) Neurite outgrowth is directed by Schwann cell alignment in the absence of other guidance cues. Ann Biomed Eng 34(4):669–676. https://doi.org/10.1007/s10439-005-9053-9

    Article  Google Scholar 

  4. Yang GH, Lee J, Kim G (2019) The fabrication of uniaxially aligned micro-textured polycaprolactone struts and application for skeletal muscle tissue regeneration. Biofabrication 11:025005. https://doi.org/10.1088/1758-5090/ab0098

    Article  Google Scholar 

  5. Llopis-Grimalt MA, Amengual-Tugores AM, Monjo M, Ramis JM (2019) Oriented cell alignment induced by a nanostructured titanium surface enhances expression of cell differentiation markers. Nanomaterials 9(12):1661. https://doi.org/10.3390/nano9121661

    Article  Google Scholar 

  6. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11(10):1775–1781. https://doi.org/10.1038/nprot.2016.123

    Article  Google Scholar 

  7. Guven S, Chen P, Inci F, Tasoglu S, Erkmen B, Demirci U (2015) Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol 33(5):269–279. https://doi.org/10.1016/j.tibtech.2015.02.003

    Article  Google Scholar 

  8. Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X (2019) Regulation and directing stem cell fate by tissue engineering functional microenvironments: scaffold physical and chemical cues. Stem Cells Int 2019:2180925. https://doi.org/10.1155/2019/2180925

    Article  Google Scholar 

  9. Xia H, Chen Q, Fang Y, Liu D, Zhong D, Wu H, Xia Y, Yan Y, Tang W, Sun X (2014) Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. Brain Res 1565:18–27. https://doi.org/10.1016/j.brainres.2014.04.002

    Article  Google Scholar 

  10. Metavarayuth K, Sitasuwan P, Zhao X, Lin Y, Wang Q (2016) Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater Sci Eng 2(2):142–151. https://doi.org/10.1021/acsbiomaterials.5b00377

    Article  Google Scholar 

  11. Li GC, Zhao XY, Zhang LZ, Wang CP, Shi YW, Yang YM (2014) Regulating Schwann cells growth by chitosan micropatterning for peripheral nerve regeneration in vitro. Macromol Biosci 14(8):1067–1075. https://doi.org/10.1002/mabi.201400098

    Article  Google Scholar 

  12. Pan F, Zhang M, Wu G, Lai Y, Greber B, Scholer HR, Chi L (2013) Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials 34(33):8131–8139. https://doi.org/10.1016/j.biomaterials.2013.07.025

    Article  Google Scholar 

  13. Silva M, Ferreira FN, Alves NM, Paiva MC (2020) Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnol 18(1):23. https://doi.org/10.1186/s12951-019-0556-1

    Article  Google Scholar 

  14. Staples RJ, Ivanovski S, Vaquette C (2020) Fibre guiding scaffolds for periodontal tissue engineering. J Periodontal Res 55(3):331–341. https://doi.org/10.1111/jre.12729

    Article  Google Scholar 

  15. Shi Y, Li Y, Coradin T (2020) Magnetically-oriented type I collagen-SiO2@Fe3O4 rods composite hydrogels tuning skin cell growth. Colloids Surf B Biointerfaces 185:110597. https://doi.org/10.1016/j.colsurfb.2019.110597

    Article  Google Scholar 

  16. Gong HY, Park J, Kim W, Kim J, Lee JY, Koh WG (2019) A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS Appl Mater Interfaces 11(51):47695–47706. https://doi.org/10.1021/acsami.9b16005

    Article  Google Scholar 

  17. Patel M, Min JH, Hong MH, Lee HJ, Kang S, Yi S, Koh WG (2020) Culture of neural stem cells on the conductive and microgrooved polymeric scaffolds fabricated via electrospun fiber-template lithography (EFTL). Biomed Mater 15(4):045007. https://doi.org/10.1088/1748-605X/ab763b

    Article  Google Scholar 

  18. Kim JI, Kim CS, Park CH (2018) Harnessing nanotopography of electrospun nanofibrous nerve guide conduits (NGCs) for neural tissue engineering. Adv Exp Med Biol 1078:395–408. https://doi.org/10.1007/978-981-13-0950-2_20

    Article  Google Scholar 

  19. Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F (2018) Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl 92:995–1005. https://doi.org/10.1016/j.msec.2018.06.065

    Article  Google Scholar 

  20. Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24. https://doi.org/10.1016/j.progpolymsci.2014.12.001

    Article  Google Scholar 

  21. Ren YJ, Zhang S, Mi R, Liu Q, Zeng X, Rao M, Hoke A, Mao HQ (2013) Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix. Acta Biomater 9(8):7727–7736. https://doi.org/10.1016/j.actbio.2013.04.034

    Article  Google Scholar 

  22. Li X, Wang X, Yao D, Jiang J, Guo X, Gao Y, Li Q, Shen C (2018) Effects of aligned and random fibers with different diameter on cell behaviors. Colloids Surf B Biointerfaces 171:461–467. https://doi.org/10.1016/j.colsurfb.2018.07.045

    Article  Google Scholar 

  23. Ingavle GC, Leach JK (2014) Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev 20(4):277–293. https://doi.org/10.1089/ten.TEB.2013.0276

    Article  Google Scholar 

  24. Taylor GI (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A 280(1382):383–397

    Article  Google Scholar 

  25. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987. https://doi.org/10.1021/acs.accounts.7b00218

    Article  Google Scholar 

  26. Hunley MT, Long TE (2008) Electrospinning functional nanoscale fibers: a perspective for the future. Polym Int 57(3):385–389. https://doi.org/10.1002/pi.2320

    Article  Google Scholar 

  27. Kenry LC (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

    Article  Google Scholar 

  28. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002

    Article  Google Scholar 

  29. Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171. https://doi.org/10.1021/nl0344256

    Article  Google Scholar 

  30. Shalumon KT, Sathish D, Nair SV, Chennazhi KP, Tamura H, Jayakumar R (2012) Fabrication of aligned poly(lactic acid)-chitosan nanofibers by novel parallel blade collector method for skin tissue engineering. J Biomed Nanotechnol 8(3):405–416. https://doi.org/10.1166/jbn.2012.1395

    Article  Google Scholar 

  31. Yang D, Lu B, Zhao Y, Jiang X (2007) Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater 19(21):3702–3706

    Article  Google Scholar 

  32. Chen MC, Sun YC, Chen YH (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9(3):5562–5572. https://doi.org/10.1016/j.actbio.2012.10.024

    Article  Google Scholar 

  33. Sun B, Jiang XJ, Zhang S, Zhang JC, Li YF, You QZ, Long YZ (2015) Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B 3(27):5389–5410. https://doi.org/10.1039/c5tb00472a

    Article  Google Scholar 

  34. Abudula T, Saeed U, Salah N, Memic A, Al-Turaif H (2018) Study of electrospinning parameters and collection methods on size distribution and orientation of PLA/PBS hybrid fiber using digital image processing. J Nanosci Nanotechnol 18(12):8240–8251. https://doi.org/10.1166/jnn.2018.15885

    Article  Google Scholar 

  35. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886. https://doi.org/10.1016/s0142-9612(03)00593-3

    Article  Google Scholar 

  36. Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218. https://doi.org/10.1021/nl0486158

    Article  Google Scholar 

  37. Wu HJ, Hu MH, Tuan-Mu HY, Hu JJ (2019) Preparation of aligned poly(glycerol sebacate) fibrous membranes for anisotropic tissue engineering. Mater Sci Eng C Mater Biol Appl 100:30–37. https://doi.org/10.1016/j.msec.2019.02.098

    Article  Google Scholar 

  38. Alazab M, Mitchell GR, Davis FJ, Mohan SD (2017) Sustainable electrospinning of nanoscale fibres. Procedia Manuf 12:66–78. https://doi.org/10.1016/j.promfg.2017.08.009

    Article  Google Scholar 

  39. Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018:3651480. https://doi.org/10.1155/2018/3651480

    Article  Google Scholar 

  40. Jana S, Levengood SK, Zhang M (2016) Anisotropic materials for skeletal-muscle-tissue engineering. Adv Mater 28(48):10588–10612. https://doi.org/10.1002/adma.201600240

    Article  Google Scholar 

  41. Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16(6):918–924. https://doi.org/10.1088/0957-4484/16/6/049

    Article  Google Scholar 

  42. Jana S, Zhang M (2013) Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B 1(20):2575–2581. https://doi.org/10.1039/c3tb20197j

    Article  Google Scholar 

  43. Liu SL, Long YZ, Zhang ZH, Zhang HD, Sun B, Zhang JC, Han WP (2013) Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning. J Nanomater 2013:713275. https://doi.org/10.1155/2013/713275

    Article  Google Scholar 

  44. Khamforoush M, Asgari T, Hatami T, Dabirian F (2014) The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method: modeling and optimization by response surface methodology. Korean J Chem Eng 31(9):1695–1706. https://doi.org/10.1007/s11814-014-0099-y

    Article  Google Scholar 

  45. Edmondson D, Cooper A, Jana S, Wood D, Zhang MQ (2012) Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem 22(35):18646–18652. https://doi.org/10.1039/c2jm33877g

    Article  Google Scholar 

  46. Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang M (2015) High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474. https://doi.org/10.1016/j.carbpol.2015.07.097

    Article  Google Scholar 

  47. Xie JW, MacEwan MR, Ray WZ, Liu WY, Siewe DY, Xia YN (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4(9):5027–5036. https://doi.org/10.1021/nn101554u

    Article  Google Scholar 

  48. Stocco TD, Rodrigues BVM, Marciano FR, Lobo AO (2017) Design of a novel electrospinning setup for the fabrication of biomimetic scaffolds for meniscus tissue engineering applications. Mater Lett 196:221–224. https://doi.org/10.1016/j.matlet.2017.03.055

    Article  Google Scholar 

  49. Kim JI, Kim JY, Park CH (2018) Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci Rep 8(1):3424. https://doi.org/10.1038/s41598-018-21618-0

    Article  MathSciNet  Google Scholar 

  50. Francis NL, Hunger PM, Donius AE, Riblett BW, Zavaliangos A, Wegst UG, Wheatley MA (2013) An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res A 101(12):3493–3503. https://doi.org/10.1002/jbm.a.34668

    Article  Google Scholar 

  51. Zhang Q, Zhao Y, Yan S, Yang Y, Zhao H, Li M, Lu S, Kaplan DL (2012) Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater 8(7):2628–2638. https://doi.org/10.1016/j.actbio.2012.03.033

    Article  Google Scholar 

  52. Caliari SR, Harley BA (2011) The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials 32(23):5330–5340. https://doi.org/10.1016/j.biomaterials.2011.04.021

    Article  Google Scholar 

  53. Neffe AT, Pierce BF, Tronci G, Ma N, Pittermann E, Gebauer T, Frank O, Schossig M, Xu X, Willie BM, Forner M, Ellinghaus A, Lienau J, Duda GN, Lendlein A (2015) One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration. Adv Mater 27(10):1738–1744. https://doi.org/10.1002/adma.201404787

    Article  Google Scholar 

  54. Davidenko N, Gibb T, Schuster C, Best SM, Campbell JJ, Watson CJ, Cameron RE (2012) Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater 8(2):667–676. https://doi.org/10.1016/j.actbio.2011.09.033

    Article  Google Scholar 

  55. Zhu JT, Wang JW, Liu QY, Liu YH, Wang L, He CC, Wang HL (2013) Anisotropic tough poly(2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. J Mater Chem B 1(7):978–986. https://doi.org/10.1039/c2tb00288d

    Article  Google Scholar 

  56. Barg S, Perez FM, Ni N, Pereira PDV, Maher RC, Garcia-Tunn E, Eslava S, Agnoli S, Mattevi C, Saiz E (2014) Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat Commun. https://doi.org/10.1038/ncomms5328

    Article  Google Scholar 

  57. Delattre B, Bai H, Ritchie RO, De Coninck J, Tomsia AP (2014) Unidirectional freezing of ceramic suspensions: in situ X-ray investigation of the effects of additives. ACS Appl Mater Interfaces 6(1):159–166. https://doi.org/10.1021/am403793x

    Article  Google Scholar 

  58. Panseri S, Montesi M, Dozio SM, Savini E, Tampieri A, Sandri M (2016) Biomimetic scaffold with aligned microporosity designed for dentin regeneration. Front Bioeng Biotechnol 4:48. https://doi.org/10.3389/fbioe.2016.00048

    Article  Google Scholar 

  59. Porter MM, Yeh M, Strawson J, Goehring T, Lujan S, Siripasopsotorn P, Meyers MA, McKittrick J (2012) Magnetic freeze casting inspired by nature. Mat Sci Eng A Struct 556:741–750. https://doi.org/10.1016/j.msea.2012.07.058

    Article  Google Scholar 

  60. Porter MM, Niksiar P, McKittrick J (2016) Microstructural control of colloidal-based ceramics by directional solidification under weak magnetic fields. J Am Ceram Soc 99(6):1917–1926. https://doi.org/10.1111/jace.14183

    Article  Google Scholar 

  61. Nelson I, Ogden TA, Al Khateeb S, Graser J, Sparks TD, Abbott JJ, Naleway SE (2019) Freeze-casting of surface-magnetized iron(II, III) oxide particles in a uniform static magnetic field generated by a Helmholtz coil. Adv Eng Mater 21(3):1801092

    Article  Google Scholar 

  62. Nelson I, Gardner L, Carlson K, Naleway SE (2019) Freeze casting of iron oxide subject to a tri-axial nested Helmholtz-coils driven uniform magnetic field for tailored porous scaffolds. Acta Mater 173:106–116. https://doi.org/10.1016/j.actamat.2019.05.003

    Article  Google Scholar 

  63. Zhang YM, Hu LY, Han JC (2009) Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. J Am Ceram Soc 92(8):1874–1876. https://doi.org/10.1111/j.1551-2916.2009.03110.x

    Article  Google Scholar 

  64. Tang YF, Zhao K, Wei JQ, Qin YS (2010) Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J Eur Ceram Soc 30(9):1963–1965. https://doi.org/10.1016/j.jeurceramsoc.2010.03.012

    Article  Google Scholar 

  65. Tang YF, Qiu S, Miao Q, Wu C (2016) Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J Eur Ceram Soc 36(5):1233–1240. https://doi.org/10.1016/j.jeurceramsoc.2015.12.012

    Article  Google Scholar 

  66. Bai H, Chen Y, Delattre B, Tomsia AP, Ritchie RO (2015) Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci Adv 1(11):e1500849. https://doi.org/10.1126/sciadv.1500849

    Article  Google Scholar 

  67. Bai H, Wang D, Delattre B, Gao W, De Coninck J, Li S, Tomsia AP (2015) Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomater 20:113–119. https://doi.org/10.1016/j.actbio.2015.04.007

    Article  Google Scholar 

  68. Tang YF, Miao Q, Qiu S, Zhao K, Hu L (2014) Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. J Eur Ceram Soc 34(15):4077–4082. https://doi.org/10.1016/j.jeurceramsoc.2014.05.040

    Article  Google Scholar 

  69. Fan L, Li JL, Cai Z, Wang X (2018) Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano 12(6):5780–5790. https://doi.org/10.1021/acsnano.8b01648

    Article  Google Scholar 

  70. Shao G, Hanaor DAH, Shen X, Gurlo A (2020) Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv Mater 32(17):e1907176. https://doi.org/10.1002/adma.201907176

    Article  Google Scholar 

  71. Du W, Hong S, Scapin G, Goulard M, Shah DI (2019) Directed Collective Cell Migration Using Three-Dimensional Bioprinted Micropatterns on Thermoresponsive Surfaces for Myotube Formation. Acs Biomater Sci Eng 5(8):3935–3943. https://doi.org/10.1021/acsbiomaterials.8b01359

    Article  Google Scholar 

  72. Li D, Wang YL (2018) Coordination of cell migration mediated by site-dependent cell-cell contact. Proc Natl Acad Sci USA 115(42):10678–10683. https://doi.org/10.1073/pnas.1807543115

    Article  Google Scholar 

  73. Kim SE, Kim MS, Shin YC, Eom SU, Lee JH, Shin DM, Hong SW, Kim B, Park JC, Shin BS, Lim D, Han DW (2016) Cell migration according to shape of graphene oxide micropatterns. Micromachines (Basel). https://doi.org/10.3390/mi7100186

    Article  Google Scholar 

  74. Paul CD, Hung WC, Wirtz D, Konstantopoulos K (2016) Engineered models of confined cell migration. Annu Rev Biomed Eng 18:159–180. https://doi.org/10.1146/annurev-bioeng-071114-040654

    Article  Google Scholar 

  75. Yoon SH, Kim YK, Han ED, Seo YH, Kim BH, Mofrad MRK (2012) Passive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells. Lab Chip 12(13):2391–2402. https://doi.org/10.1039/c2lc40084g

    Article  Google Scholar 

  76. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318. https://doi.org/10.1161/CIRCRESAHA.108.173989

    Article  Google Scholar 

  77. Ermis M, Akkaynak D, Chen P, Demirci U, Hasirci V (2016) A high throughput approach for analysis of cell nuclear deformability at single cell level. Sci Rep 6:36917. https://doi.org/10.1038/srep36917

    Article  Google Scholar 

  78. Peng R, Yao X, Ding J (2011) Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32(32):8048–8057. https://doi.org/10.1016/j.biomaterials.2011.07.035

    Article  Google Scholar 

  79. Yap FL, Zhang Y (2007) Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron 22(6):775–788. https://doi.org/10.1016/j.bios.2006.03.016

    Article  Google Scholar 

  80. Lin XX, Shi Y, Cao YL, Liu W (2016) Recent progress in stem cell differentiation directed by material and mechanical cues. Biomed Mater 11(1):014109. https://doi.org/10.1088/1748-6041/11/1/014109

    Article  Google Scholar 

  81. Saner CK, Lu L, Zhang DH, Garno JC (2015) Chemical approaches for nanoscale patterning based on particle lithography with proteins and organic thin films. Nanotechnol Rev 4(2):129–143. https://doi.org/10.1515/ntrev-2015-0002

    Article  Google Scholar 

  82. Ermis M, Antmen E, Hasirci V (2018) Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact Mater 3(3):355–369. https://doi.org/10.1016/j.bioactmat.2018.05.005

    Article  Google Scholar 

  83. D’Arcangelo E, McGuigan AP (2015) Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 58(1):13–23. https://doi.org/10.2144/000114245

    Article  Google Scholar 

  84. Chen G, Kawazoe N (2020) Regulation of stem cell functions by micro-patterned structures. Adv Exp Med Biol 1250:141–155. https://doi.org/10.1007/978-981-15-3262-7_10

    Article  Google Scholar 

  85. Sen AK, Raj A, Banerjee U, Iqbal SR (2019) Soft lithography, molding, and micromachining techniques for polymer micro devices. Methods Mol Biol 1906:13–54. https://doi.org/10.1007/978-1-4939-8964-5_2

    Article  Google Scholar 

  86. Perl A, Reinhoudt DN, Huskens J (2009) Microcontact printing: limitations and achievements. Adv Mater 21(22):2257–2268. https://doi.org/10.1002/adma.200801864

    Article  Google Scholar 

  87. Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(2):243–253. https://doi.org/10.1021/bp020143k

    Article  Google Scholar 

  88. Friguglietti J, Das S, Le P, Fraga D, Quintela M, Gazze SA, McPhail D, Gu J, Sabek O, Gaber AO, Francis LW, Zagozdzon-Wosik W, Merchant FA (2020) Novel silicon titanium diboride micropatterned substrates for cellular patterning. Biomaterials 244:119927. https://doi.org/10.1016/j.biomaterials.2020.119927

    Article  Google Scholar 

  89. Macadangdang J, Lee HJ, Carson D, Jiao A, Fugate J, Pabon L, Regnier M, Murry C, Kim DH (2014) Capillary force lithography for cardiac tissue engineering. J Vis Exp (88):50039. https://doi.org/10.3791/50039

    Article  Google Scholar 

  90. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS (2010) Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31(15):4360–4366. https://doi.org/10.1016/j.biomaterials.2010.02.012

    Article  Google Scholar 

  91. Jeong HE, Kwak R, Kim JK, Suh KY (2008) Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography. Small 4(11):1913–1918. https://doi.org/10.1002/smll.200800151

    Article  Google Scholar 

  92. Li JY, Ho YC, Chung YC, Lin FC, Liao WL, Tsai WB (2013) Preparation of micron/submicron hybrid patterns via a two-stage UV-imprint technique and their dimensional effects on cell adhesion and alignment. Biofabrication 5(3):035003. https://doi.org/10.1088/1758-5082/5/3/035003

    Article  Google Scholar 

  93. Lu JY, Zhang XX, Zhu QY, Zhang FR, Huang WT, Ding XZ, Xia LQ, Luo HQ, Li NB (2018) Highly tunable and scalable fabrication of 3D flexible graphene micropatterns for directing cell alignment. ACS Appl Mater Interfaces 10(21):17704–17713. https://doi.org/10.1021/acsami.8b04416

    Article  Google Scholar 

  94. Ma C, Qu TJ, Chang B, Jing Y, Feng JQ, Liu XH (2018) 3D maskless micropatterning for regeneration of highly organized tubular tissues. Adv Healthc Mater 7(3):1700738. https://doi.org/10.1002/adhm.201700738

    Article  Google Scholar 

  95. Park JA, Yoon S, Kwon J, Now H, Kim YK, Kim WJ, Yoo JY, Jung S (2018) Freeform micropatterning of living cells into cell culture medium using direct inkjet printing. Sci Rep 7:1–11

    Google Scholar 

  96. Sumaru K, Takagi T, Morishita K, Satoh T, Kanamori T (2018) Fabrication of pocket-like hydrogel microstructures through photolithography. Soft Matter 14(28):5710–5714. https://doi.org/10.1039/c8sm00865e

    Article  Google Scholar 

  97. Gantumur E, Kimura M, Taya M, Horie M, Nakamura M, Sakai S (2020) Inkjet micropatterning through horseradish peroxidase-mediated hydrogelation for controlled cell immobilization and microtissue fabrication. Biofabrication 12(1):011001. https://doi.org/10.1088/1758-5090/ab3b3c

    Article  Google Scholar 

  98. Cha SH, Lee HJ, Koh WG (2017) Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res 21(1):1. https://doi.org/10.1186/s40824-016-0087-x

    Article  Google Scholar 

  99. Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP (2016) Micropatterning extracellular matrix proteins on electrospun fibrous substrate promote human mesenchymal stem cell differentiation toward neurogenic lineage. ACS Appl Mater Interfaces 8(1):563–573. https://doi.org/10.1021/acsami.5b09588

    Article  Google Scholar 

  100. Shi J, Wang L, Chen Y (2009) Microcontact printing and lithographic patterning of electrospun nanofibers. Langmuir 25(11):6015–6018. https://doi.org/10.1021/la900811k

    Article  Google Scholar 

  101. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138. https://doi.org/10.1126/science.1106587

    Article  Google Scholar 

  102. Huang C, Tang YW, Liu X, Sutti A, Ke QF, Mo XM, Wang XG, Morsi Y, Lin T (2011) Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter 7(22):10812–10817. https://doi.org/10.1039/c1sm06430d

    Article  Google Scholar 

  103. Sharma CS, Sharma A, Madou M (2010) Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers. Langmuir 26(4):2218–2222. https://doi.org/10.1021/la904078r

    Article  Google Scholar 

  104. Sankar S, Kakunuri M, Eswaramoorthy SD, Sharma CS, Rath SN (2018) Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: biomimicking bone. J Tissue Eng Regen Med 12(4):E2073–E2084. https://doi.org/10.1002/term.2640

    Article  Google Scholar 

  105. Zhang LZ, Chen SY, Liang RY, Chen Y, Li SJ, Li SQ, Sun ZD, Wang YL, Li GC, Ming AJ, Yang YM (2018) Fabrication of alignment polycaprolactone scaffolds by combining use of electrospinning and micromolding for regulating Schwann cells behavior. J Biomed Mater Res A 106(12):3123–3134. https://doi.org/10.1002/jbm.a.36507

    Article  Google Scholar 

  106. Guex AG, Birrer DL, Fortunato G, Tevaearai HT, Giraud MN (2013) Anisotropically oriented electrospun matrices with an imprinted periodic micropattern: a new scaffold for engineered muscle constructs. Biomed Mater. https://doi.org/10.1088/1748-6041/8/2/021001

    Article  Google Scholar 

  107. Ma J, He Y, Liu X, Chen W, Wang A, Lin CY, Mo X, Ye X (2018) A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomed 13:1553–1567. https://doi.org/10.2147/IJN.S143990

    Article  Google Scholar 

  108. Jin G, Li J, Li K (2017) Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound. Mater Sci Eng C Mater Biol Appl 70(Pt 2):1176–1181. https://doi.org/10.1016/j.msec.2016.04.107

    Article  Google Scholar 

  109. Montero RB, Vial X, Nguyen DT, Farhand S, Reardon M, Pham SM, Tsechpenakis G, Andreopoulos FM (2012) bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater 8(5):1778–1791. https://doi.org/10.1016/j.actbio.2011.12.008

    Article  Google Scholar 

  110. Park S, Kim D, Park S, Kim S, Lee D, Kim W, Kim J (2018) Nanopatterned scaffolds for neural tissue engineering and regenerative medicine. Adv Exp Med Biol 1078:421–443. https://doi.org/10.1007/978-981-13-0950-2_22

    Article  Google Scholar 

  111. Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104. https://doi.org/10.1016/j.pneurobio.2015.06.001

    Article  Google Scholar 

  112. Carvalho CR, Oliveira JM, Reis RL (2019) Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol 7:337. https://doi.org/10.3389/fbioe.2019.00337

    Article  Google Scholar 

  113. Samadian H, Ehterami A, Sarrafzadeh A, Khastar H, Nikbakht M, Rezaei A, Chegini L, Salehi M (2020) Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol 150:380–388. https://doi.org/10.1016/j.ijbiomac.2020.02.102

    Article  Google Scholar 

  114. Hou Y, Wang X, Zhang Z, Luo J, Cai Z, Wang Y, Li YJ (2019) Repairing transected peripheral nerve using a biomimetic nerve guidance conduit containing intraluminal sponge fillers. Adv Healthc Mater 8(21):1900913. https://doi.org/10.1002/adhm.201970082

    Article  Google Scholar 

  115. Kim JI, Hwang TI, Aguilar LE, Park CH, Kim CS (2016) A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci Rep 6:23761. https://doi.org/10.1038/srep23761

    Article  Google Scholar 

  116. Zhu YQ, Wang AJ, Patel S, Kurpinski K, Diao E, Bao X, Kwong G, Young WL, Li S (2011) Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Eng Part C-Methods 17(7):705–715. https://doi.org/10.1089/ten.tec.2010.0565

    Article  Google Scholar 

  117. Hu X, Huang J, Ye Z, Xia L, Li M, Lv B, Shen X, Luo Z (2009) A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng Part A 15(11):3297–3308. https://doi.org/10.1089/ten.TEA.2009.0017

    Article  Google Scholar 

  118. Zhang YG, Sheng QS, Qi FY, Hu XY, Zhao W, Wang YQ, Lan LF, Huang JH, Luo ZJ (2013) Schwann cell-seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats. J Mater Sci Mater Med 24(7):1767–1780. https://doi.org/10.1007/s10856-013-4917-2

    Article  Google Scholar 

  119. Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D, Fang J, Liu W, Fan C, Lin T (2015) Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces 7(13):7189–7196. https://doi.org/10.1021/am509227t

    Article  Google Scholar 

  120. Zhang D, Yao Y, Duan Y, Yu X, Shi H, Nakkala JR, Zuo X, Hong L, Mao Z, Gao C (2020) Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly(d, l-lactide-co-caprolactone) conduits promote peripheral nerve regeneration. ACS Appl Mater Interfaces 12(7):7915–7930. https://doi.org/10.1021/acsami.9b20321

    Article  Google Scholar 

  121. Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S (2015) The effect of electrospun gelatin fibers alignment on schwann cell and axon behavior and organization in the perspective of artificial nerve design. Int J Mol Sci 16(6):12925–12942. https://doi.org/10.3390/ijms160612925

    Article  Google Scholar 

  122. Singh A, Shiekh PA, Das M, Seppala J, Kumar A (2019) Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation. Biomacromolecules 20(2):662–673. https://doi.org/10.1021/acs.biomac.8b01308

    Article  Google Scholar 

  123. Rebowe R, Rogers A, Yang X, Kundu SC, Smith TL, Li Z (2018) Nerve repair with nerve conduits: problems, solutions, and future directions. J Hand Microsurg 10(2):61–65. https://doi.org/10.1055/s-0038-1626687

    Article  Google Scholar 

  124. Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, Yang Y, Ma T, Cheng P, Luo K (2018) A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater 68:223–236. https://doi.org/10.1016/j.actbio.2017.12.010

    Article  Google Scholar 

  125. Shah MB, Chang W, Zhou G, Glavy JS, Cattabiani TM, Yu X (2019) Novel spiral structured nerve guidance conduits with multichannels and inner longitudinally aligned nanofibers for peripheral nerve regeneration. J Biomed Mater Res B Appl Biomater 107(5):1410–1419. https://doi.org/10.1002/jbm.b.34233

    Article  Google Scholar 

  126. Liu J, Saul D, Boker KO, Ernst J, Lehman W, Schilling AF (2018) Current methods for skeletal muscle tissue repair and regeneration. Biomed Res Int 2018:1984879. https://doi.org/10.1155/2018/1984879

    Article  Google Scholar 

  127. Kwee BJ, Mooney DJ (2017) Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotech 47:16–22. https://doi.org/10.1016/j.copbio.2017.05.003

    Article  Google Scholar 

  128. Abarzua-Illanes PN, Padilla C, Ramos A, Isaacs M, Ramos-Grez J, Olguin HC, Valenzuela LM (2017) Improving myoblast differentiation on electrospun poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 105(8):2241–2251. https://doi.org/10.1002/jbm.a.36091

    Article  Google Scholar 

  129. Gilbert-Honick J, Iyer SR, Somers SM, Lovering RM, Wagner K, Mao HQ, Grayson WL (2018) Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials 164:70–79

    Article  Google Scholar 

  130. Gilbert-Honick J, Ginn B, Zhang Y, Salehi S, Wagner KR, Mao HQ, Grayson WL (2018) Adipose-derived stem/stromal cells on electrospun fibrin microfiber bundles enable moderate muscle reconstruction in a volumetric muscle loss model. Cell Transplant 27(11):1644–1656. https://doi.org/10.1177/0963689718805370

    Article  Google Scholar 

  131. Yeo M, Kim GH (2018) Anisotropically aligned cell-laden nanofibrous bundle fabricated via cell electrospinning to regenerate skeletal muscle tissue. Small 14(48):1803491

    Article  Google Scholar 

  132. Guo Y, Gilbert-Honick J, Somers SM, Mao HQ, Grayson WL (2019) Modified cell-electrospinning for 3D myogenesis of C2C12s in aligned fibrin microfiber bundles. Biochem Biophys Res Commun 516(2):558–564. https://doi.org/10.1016/j.bbrc.2019.06.082

    Article  Google Scholar 

  133. Wang L, Wu YB, Guo BL, Ma PX (2015) Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9):9167–9179. https://doi.org/10.1021/acsnano.5b03644

    Article  Google Scholar 

  134. Yeo M, Lee H, Kim GH (2016) Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Biofabrication 8(3):035021. https://doi.org/10.1088/1758-5090/8/3/035021

    Article  Google Scholar 

  135. Yeo M, Kim G (2019) Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Carbohydr Polym 223:115041. https://doi.org/10.1016/j.carbpol.2019.115041

    Article  Google Scholar 

  136. Lee H, Kim W, Lee J, Yoo JJ, Kim GH, Lee SJ (2019) Effect of hierarchical scaffold consisting of aligned dECM nanofibers and poly(lactide-co-glycolide) struts on the orientation and maturation of human muscle progenitor cells. ACS Appl Mater Interfaces 11(43):39449–39458. https://doi.org/10.1021/acsami.9b12639

    Article  Google Scholar 

  137. Jana S, Leung M, Chang J, Zhang M (2014) Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Biofabrication 6(3):035012. https://doi.org/10.1088/1758-5082/6/3/035012

    Article  Google Scholar 

  138. Park J, Choi JH, Kim S, Jang I, Jeong S, Lee JY (2019) Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomater 97:141–153. https://doi.org/10.1016/j.actbio.2019.07.044

    Article  Google Scholar 

  139. Ebrahimi M, Ostrovidov S, Salehi S, Kim SB, Bae H, Khademhosseini A (2018) Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. J Tissue Eng Regen Med 12(11):2151–2163. https://doi.org/10.1002/term.2738

    Article  Google Scholar 

  140. Kim J, Leem J, Kim HN, Kang P, Choi J, Haque MF, Kang D, Nam S (2019) Uniaxially crumpled graphene as a platform for guided myotube formation. Microsyst Nanoeng 5:53. https://doi.org/10.1038/s41378-019-0098-6

    Article  Google Scholar 

  141. Suarez AMA, Zhou QH, van Rijn P, Harmsen MC (2019) Directional topography gradients drive optimum alignment and differentiation of human myoblasts. J Tissue Eng Regen Med 13(12):2234–2245. https://doi.org/10.1002/term.2976

    Article  Google Scholar 

  142. Grigola MS, Dyck CL, Babacan DS, Joaquin DN, Hsia KJ (2014) Myoblast alignment on 2D wavy patterns: dependence on feature characteristics and cell–cell interaction. Biotechnol Bioeng 111(8):1617–1626. https://doi.org/10.1002/bit.25219

    Article  Google Scholar 

  143. Apsite I, Uribe JM, Posada AF, Rosenfeldt S, Salehi S, Ionov L (2019) 4D biofabrication of skeletal muscle microtissues. Biofabrication 12(1):015016. https://doi.org/10.1088/1758-5090/ab4cc4

    Article  Google Scholar 

  144. Zabrzynski J, Lapaj L, Paczesny L, Zabrzynska A, Grzanka D (2018) Tendon—function-related structure, simple healing process and mysterious ageing. Folia Morphol 77(3):416–427. https://doi.org/10.5603/FM.a2018.0006

    Article  Google Scholar 

  145. Walden G, Liao X, Donell S, Raxworthy MJ, Riley GP, Saeed A (2017) A clinical, biological, and biomaterials perspective into tendon injuries and regeneration. Tissue Eng Part B Res 23(1):44–58. https://doi.org/10.1089/ten.teb.2016.0181

    Article  Google Scholar 

  146. Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X (2018) Physical microenvironment-based inducible scaffold for stem cell differentiation and tendon regeneration. Tissue Eng Part B Rev 24(6):443–453. https://doi.org/10.1089/ten.TEB.2018.0018

    Article  Google Scholar 

  147. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX (2019) Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med 16(6):549–571. https://doi.org/10.1007/s13770-019-00196-w

    Article  Google Scholar 

  148. Stace ET, Nagra NS, Tiberwel S, Khan W, Carr AJ (2018) The use of electrospun scaffolds in musculoskeletal tissue engineering: a focus on tendon and the rotator cuff. Curr Stem Cell Res Therapy 13(8):619–631

    Article  Google Scholar 

  149. Breidenbach AP, Gilday SD, Lalley AL, Dyment NA, Gooch C, Shearn JT, Butler DL (2014) Functional tissue engineering of tendon: establishing biological success criteria for improving tendon repair. J Biomech 47(9):1941–1948. https://doi.org/10.1016/j.jbiomech.2013.10.023

    Article  Google Scholar 

  150. Domingues RM, Chiera S, Gershovich P, Motta A, Reis RL, Gomes ME (2016) Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals. Adv Healthc Mater 5(11):1364–1375. https://doi.org/10.1002/adhm.201501048

    Article  Google Scholar 

  151. Pauly HM, Kelly DJ, Popat KC, Trujillo NA, Dunne NJ, McCarthy HO, Haut Donahue TL (2016) Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: effects of orientation and geometry. J Mech Behav Biomed Mater 61:258–270. https://doi.org/10.1016/j.jmbbm.2016.03.022

    Article  Google Scholar 

  152. Wang W, He J, Feng B, Zhang Z, Zhang W, Zhou G, Cao Y, Fu W, Liu W (2016) Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo. Nanomedicine (London) 11(9):1055–1072. https://doi.org/10.2217/nnm.16.24

    Article  Google Scholar 

  153. Yin Z, Chen X, Song HX, Hu JJ, Tang QM, Zhu T, Shen WL, Chen JL, Liu H, Heng BC, Ouyang HW (2015) Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials 44:173–185. https://doi.org/10.1016/j.biomaterials.2014.12.027

    Article  Google Scholar 

  154. Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, Ruch DS, Guilak F, Little D (2015) Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater 24:117–126. https://doi.org/10.1016/j.actbio.2015.06.010

    Article  Google Scholar 

  155. Wu S, Wang Y, Streubel PN, Duan B (2017) Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater 62:102–115. https://doi.org/10.1016/j.actbio.2017.08.043

    Article  Google Scholar 

  156. Xu Y, Wu J, Wang H, Li H, Di N, Song L, Li S, Li D, Xiang Y, Liu W, Mo X, Zhou Q (2013) Fabrication of electrospun poly(L-lactide-co-epsilon-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods 19(12):925–936. https://doi.org/10.1089/ten.TEC.2012.0328

    Article  Google Scholar 

  157. Yang C, Deng G, Chen W, Ye X, Mo X (2014) A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids Surf B Biointerfaces 122:270–276. https://doi.org/10.1016/j.colsurfb.2014.06.061

    Article  Google Scholar 

  158. Lenzi TL, Guglielmi Cde A, Arana-Chavez VE, Raggio DP (2013) Tubule density and diameter in coronal dentin from primary and permanent human teeth. Microsc Microanal 19(6):1445–1449. https://doi.org/10.1017/S1431927613012725

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFA0703000), the National Natural Science Foundation of China (81670972, 31872752), Key Research and Development Program of Zhejiang, China (2017C01054, 2018C03062, 2017C01063), and Postdoctoral Science Foundation of China (2020TQ0257, 2020M681896).

Author information

Authors and Affiliations

Authors

Contributions

KL, YQ, MY and HW designed the research and drafted the manuscript. JG and ZZ helped organize the manuscript. KL, JG, YQ, ZZ, JY, LM, MY and HW revised and finalized the paper. All authors have read and approved the final manuscript and, therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

Corresponding authors

Correspondence to Mengfei Yu or Huiming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Qian, Y., Gong, J. et al. Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Bio-des. Manuf. 4, 258–277 (2021). https://doi.org/10.1007/s42242-020-00104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00104-5

Keywords

Navigation