Skip to main content
Log in

Talaromyces pinophilus inhibits Pythium and Rhizoctonia-induced damping-off of cucumber

  • Short Communication
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study examined the biocontrol potential of 39 fungal isolates obtained from the rhizosphere of tomato and cucumber in Oman against Pythium aphanidermatum and Rhizoctonia solani, major causal agents of damping-off of cucumber. Soil samples were collected from the rhizosphere of cucumber and tomato and the direct plating technique was used for isolating fungi from soil samples. In vitro screening of the 39 fungal isolates against P. aphanidermatum and R. solani was performed by the dual culture method. Among the 39 isolates, TT266 was found to be the most effective in interfering with growth of P. aphanidermatum and R. solani. Bioassay experiments showed that isolate TT266 significantly improved the survival of cucumber seedlings from 8% when inoculated with Pythium to 38% when TT266 was used (P < 0.05). TT266 also significantly improved the percentage of cucumber survival inoculated with R. solani from 15 to 69%. The biocontrol agent did not have any negative effects on the survival, root length, shoot length or dry weight of cucumber seedlings. Identification of TT266 to the species level using sequences of the ITS region showed that it was Talaromyces pinophilus. This is the first report of Talaromyces pinophilus as a potential biocontrol agent for Pythium and Rhizoctonia damping-off of cucumber. The study also confirms that fungal isolates present in the rhizosphere of vegetable crops can be potential biocontrol agents for soil borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aburjai T, Natsheh FM (2003) Plants used in cosmetics. Phytother Res 17:987–1000. https://doi.org/10.1002/ptr.1363

    Article  PubMed  Google Scholar 

  • Al-Hinai AH, Al-Sadi AM, Al-Bahry SN, Mothershaw AS, Al-Said FA, Al-Harthi SA, Deadman ML (2010) Isolation and characterization of Pseudomonas aeruginosa with antagonistic activity against Pythium aphanidermatum. J Plant Pathol 92:653–660

    CAS  Google Scholar 

  • Al-Mawaali QS, Al-Sadi AM, Khan AJ, Al-Hasani HD, Deadman ML (2012) Response of cucurbit rootstocks to Pythium aphanidermatum. Crop Prot 42:64–68. https://doi.org/10.1016/j.cropro.2012.07.017

    Article  Google Scholar 

  • Al-Rawahi AK, Hancock JG (1998) Parasitism and biological control of Verticillium dahliae by Pythium oligandrum. Plant Dis 82:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi AM (2012) Efficacy of mefenoxam is affected by a lag period between application and inactivation of Pythium species. Phytopathol Mediterr 51:292–297

    CAS  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kaabi SM, Al-Quraini SM, Al-Mazroui SS, Al-Mahmooli IH, Deadman ML (2011a) Occurrence, characterization and management of fruit rot of immature cucumbers under greenhouse conditions in Oman. Phytopathol Mediterr 50:421–429

    Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kiyumi KS, Al-Mahrouqi RS, Al-Mahmooli IH, Deadman ML (2011b) Etiology and characterization of cucumber vine decline in Oman. Crop Prot 30:192–197. https://doi.org/10.1016/j.cropro.2010.10.013

    Article  Google Scholar 

  • Al-Sadi AM, Al-Ghaithi AG, Al-Balushi ZM, Al-Jabri AH (2012) Analysis of diversity in Pythium aphanidermatum populations from a single greenhouse reveals phenotypic and genotypic changes over 2006 to 2011. Plant Dis 96:852–858. https://doi.org/10.1094/pdis-07-11-0624

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi AM, Al-Masoodi RS, Al-Ismaili M, Al-Mahmooli IH (2015) Population structure and development of resistance to hymexazol among Fusarium solani populations from date palm, citrus and cucumber. J Phytopathol 163:947–955. https://doi.org/10.1111/jph.12397

    Article  CAS  Google Scholar 

  • Arroyave-Toro JJ, Mosquera S, Villegas-Escobar V (2017) Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biol Control 114:195–200. https://doi.org/10.1016/j.biocontrol.2017.08.014

    Article  CAS  Google Scholar 

  • Blaya J, López-Mondéjar R, Lloret E, Pascual JA, Ros M (2013) Changes induced by Trichoderma harzianum in suppressive compost controlling fusarium wilt. Pestic Biochem Physiol 107:112–119

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt A, Day B (2013) A genomics perspective on cucurbit-oomycete interactions. Plant Biotechnology 30:265–271. https://doi.org/10.5511/plantbiotechnology.13.0315a

    Article  CAS  Google Scholar 

  • Collazo C, Abadias M, Aguiló-Aguayo I, Alegre I, Chenoll E, Viñas I (2017) Studies on the biocontrol mechanisms of Pseudomonas graminis strain CPA-7 against food-borne pathogens in vitro and on fresh-cut melon. LWT Food Sci Technol 85:301–308. https://doi.org/10.1016/j.lwt.2017.02.029

    Article  CAS  Google Scholar 

  • Culebro-Ricaldi JM, Ruíz-Valdiviezo VM, Rodríguez-Mendiola MA, Ávila-Miranda ME, Gutiérrez-Miceli FA, Cruz-Rodríguez RI, Dendooven L, Montes-Molina JA (2017) Antifungal properties of Beauveria bassiana strains against Fusarium oxysporum f. sp. lycopersici race 3 in tomato crop. J Environ Biol 38:821–827. https://doi.org/10.22438/jeb/38/5/MRN-412

    Article  CAS  Google Scholar 

  • Davis RM, Nunez JJ (1999) Influence of crop rotation on the incidence of Pythium- and Rhizoctonia-induced carrot root dieback. Plant Dis 83:146–148

    Article  CAS  PubMed  Google Scholar 

  • Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee S-G, Huh Y-C, Sun Z, Miguel A, King SR, Cohen R, Lee J-M (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • Dombrovsky A, Tran-Nguyen LTT, Jones RAC (2017) Cucumber green mottle mosaic virus: rapidly increasing global distribution, etiology, epidemiology, and management. Annu Rev Phytopathol 55:231–256

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) FAOSTAT [Online]. FAO. Available: http://faostat3.fao.org/browse/rankings/countries_by_commodity/E [Accessed 5 October 2016]

  • Hasanvand V, Shams-Bakhsh M (2017) Identification of viruses infecting cucurbits and determination of genetic diversity of cucumber mosaic virus in Lorestan province, Iran. Journal of Plant Protection Research 57:91–100. https://doi.org/10.1515/jppr-2017-0012

    Article  Google Scholar 

  • Hodges DM, Lester GE (2011) Cucurbits [cucumber, melon, pumpkin and squash]. In: Terry L (ed) Health-promoting properties of fruit and vegetables. CABI, Wallingford, pp 118–134

    Chapter  Google Scholar 

  • Huang X, Liu L, Wen T, Zhang J, Shen Q, Cai Z (2016) Reductive soil disinfestations combined or not with Trichoderma for the treatment of a degraded and Rhizoctonia solani infested greenhouse soil. Sci Hortic 206:51–61. https://doi.org/10.1016/j.scienta.2016.04.033

    Article  Google Scholar 

  • Kakvan N, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2013) Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot 53:80–84. https://doi.org/10.1016/j.cropro.2013.06.009

    Article  Google Scholar 

  • Kato-Noguchi H, Thi HL (2012) Cucumber as a source of biological active substances. In: Wilson C, Morree M (eds) Vegetable consumption and health: new research. Curtin Research Publications, Curtin University, pp 111–124

    Google Scholar 

  • Krishnapura PR, Belur PD (2016) Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B Enzym 124:83–91. https://doi.org/10.1016/j.molcatb.2015.12.007

    Article  CAS  Google Scholar 

  • Maina S, Coutts BA, Edwards OR, Almeida LD, Kehoe MA, Ximenes A, Jones RAC (2017) Zucchini yellow mosaic virus populations from east Timorese and northern Australian cucurbit crops: molecular properties, genetic connectivity, and biosecurity implications. Plant Dis 101:1236–1245. https://doi.org/10.1094/PDIS-11-16-1672-RE

    Article  CAS  PubMed  Google Scholar 

  • Moorman GW, Kim SH (2004) Species of Pythium from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam. Plant Dis 88:630–632

    Article  CAS  PubMed  Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M, Afshari-Azad H (2010) Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol Mediterr 49:321–329

    Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M (2012) Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. J Plant Growth Regul 31:471–477. https://doi.org/10.1007/s00344-011-9256-2

    Article  CAS  Google Scholar 

  • Naraghi L, Heydari A, Askari H, Pourrahim R, Marzban R (2014) Biological control of Polymyxa betae, fungal vector of rhizomania disease of sugar beets in greenhouse conditions. J Plant Prot Res 54:109–114. https://doi.org/10.2478/jppr-2014-0018

    Article  Google Scholar 

  • Ojaghian MR (2011) Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39:185–193. https://doi.org/10.1007/s12600-011-0153-9

    Article  Google Scholar 

  • Prasanna R, Babu S, Bidyarani N, Kumar A, Triveni S, Monga D, Mukherjee AK, Kranthi S, Gokte-Narkhedkar N, Adak A, Yadav K, Nain L, Saxena AK (2015) Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Exp Agric 51:42–65. https://doi.org/10.1017/s0014479714000143

    Article  Google Scholar 

  • Punja ZK, Yip R (2003) Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can J Plant Pathol 25:411–417

    Article  Google Scholar 

  • Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q (2017) Success evaluation of the biological control of fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol 37:202–212. https://doi.org/10.3109/07388551.2015.1130683

    Article  PubMed  Google Scholar 

  • Sathiyabama M, Parthasarathy R (2017) Withanolide production by fungal endophyte isolated from Withania somnifera. Nat Prod Res:1–5. https://doi.org/10.1080/14786419.2017.1389934

  • Sembiring M, Elfiati D, Sutarta ES, Sabrina T (2017) Phosphate solubilization agents in increasing potatoes production on andisol Sinabung area. Asian J Plant Sci 16:141–148. https://doi.org/10.3923/ajps.2017.141.148

    Article  CAS  Google Scholar 

  • Siala R, Chobba IB, Vallaeys T, Triki MA, Jrad M, Cheffi M, Ayedi I, Elleuch A, Nemsi A, Cerqueira F, Gdoura R, Drira N, Gharsallah N (2016) Analysis of the cultivable endophytic bacterial diversity in the date palm (Phoenix dactylifera L.) and evaluation of its antagonistic potential against pathogenic Fusarium species that cause date palm bayound disease. J Appl Environ Microbiol 4:93–104

    CAS  Google Scholar 

  • Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Sun X, Wang Z, Gu Q, Li H, Han W, Shi Y (2017) Transcriptome analysis of Cucumis sativus infected by cucurbit chlorotic yellows virus. Virol J 14:1–8. https://doi.org/10.1186/s12985-017-0690-z

    Article  CAS  Google Scholar 

  • Ting ASY, Hermanto A, Peh KL (2014) Indigenous actinomycetes from empty fruit bunch compost of oil palm: evaluation on enzymatic and antagonistic properties. Biocatal Agric Biotechnol 3:310–315. https://doi.org/10.1016/j.bcab.2014.03.004

    Article  Google Scholar 

  • Vinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA, Marra R, Lombardi N, Lacatena F, Grauso L, Finizio S, Lorito M, Woo SL (2017a) Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci Rep 7. https://doi.org/10.1038/s41598-017-14569-5

  • Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d’Errico G, Digilio MC, Lorito M, Woo SL (2017b) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785. https://doi.org/10.1080/14786419.2017.1290624

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A Guide to Methods and Applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Xian L, Wang F, Luo X, Feng YL, Feng JX (2015) Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 10. https://doi.org/10.1371/journal.pone.0121531

  • Yu C, Fan L, Wu Q, Fu K, Gao S, Wang M, Gao J, Li Y, Chen J (2014) Biological role of Trichoderma harzianum-derived platelet-activating factor Acetylhydrolase (PAF-AH) on stress response and antagonism. PLoS One 9:e100367

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One 12. https://doi.org/10.1371/journal.pone.0170557

  • Zhang QX, Zhang Y, Shan HH, Tong YH, Chen XJ, Liu FQ (2017) Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10. Environ Sci Pollut Res:1–10. https://doi.org/10.1007/s11356-017-0179-8

Download references

Acknowledgments

Authors would like to acknowledge financial support to the study from Sultan Qaboos University and Oman Animal and Plant Genetic Resources Center through the projects EG/AGR/CROP/16/01 and IG/AGR/CROP/16/03. Thanks to Dr. Sajeewa for his help in phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah M. Al-Sadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazerooni, E.A., Rethinasamy, V. & Al-Sadi, A.M. Talaromyces pinophilus inhibits Pythium and Rhizoctonia-induced damping-off of cucumber. J Plant Pathol 101, 377–383 (2019). https://doi.org/10.1007/s42161-018-0186-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-018-0186-8

Keywords

Navigation