Skip to main content

Advertisement

Log in

Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Sodium-ion battery (SIB) arises as propitious energy sources complementing the energy supply demands amidst of proliferating energy crises and environmental trauma due to fossil fuel consumption. Higher earth abundance, similar electrochemistry as lithium, and cost-effectiveness have driven the research focused on building better SIBs. Solid inorganic and polymer electrolytes (PEs) are prevailing electrolyte candidates for SIBs. The bottleneck of both the electrolytes, such as low ionic conductivity, poor mechanical and thermal stability, and high interfacial charge resistance, has retarded the rate of their commercial acceptance for futuristic energy devices. To tackle these burning issues, strategies to couple inorganic and polymer electrolytes as composite polymer electrolytes (CPEs) are drawing immense interest in academia and industry. The present review discusses the state-of-the-art composite polymer electrolytes for SIBs. It comprises three parts. The first part briefs about the introduction and performance index of CPEs to assess the importance of CPEs over existing electrolytes. In the second part, various synthesis methods for CPEs preparations are encapsulated. The third part is focused on the role of extrinsic fillers (active and passive) and the corresponding mechanism involved in ionic transport in CPEs by recently reported works. The role of filler engineering in addressing the remedies of CPEs is also intensely scrutinized. Finally, this review is concluded with the perspective of CPEs toward the future of SIB development. This review is aiming to understand the insight of fillers within CPEs and their impact on the performance of SIBs.

Graphical abstract

This review discusses the state-of-the-art of composite polymer electrolytes for sodium-ion batteries and their future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Copyright© 2019 Wiley–VCH

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Reproduced with permission from ref. [47]. Copyright© 2020 from the Royal Society of Chemistry

Similar content being viewed by others

Abbreviations

SIB:

Sodium-ion battery

LIB:

Lithium-ion battery

ICE:

Inorganic ceramic electrolyte

PEG:

Polyethylene glycol

PEGDME:

Poly(ethylene glycol) dimethyl ether

SN:

Succinonitrile

PEO:

Polyethylene oxide

PVDF:

Poly(vinylidene fluoride)

PVDF-HFP:

Poly(vinylidene fluoride-co-hexafluoropropylene)

PVP:

Polyvinylpyrrolidone

PMMA:

Poly(methyl methacrylate)

NaClO4 :

Sodium perchlorate

NaTFSI:

Sodium bis(trifluoromethylsulfonyl)imide

NaFSI:

Sodium (I) bis(fluorosulfonyl)imide

QD:

Quantum dot

SiO2 :

Silicon dioxide

LC:

Liquid crystal

ZrO2 :

Zirconium dioxide

Al2O3 :

Aluminum oxide

CaO:

Calcium oxide

Zn2Fe2O4 :

Zinc ferrite

Si3N4 :

Silicon nitride

NaPO3 :

Sodium triphosphate

NaIO4 :

Sodium periodate

NaTF:

Sodium triflate

NaCF3SO3 :

Sodium trifluoromethanesulfonate

NaPF6 :

Sodium hexafluorophosphate

TEGDME:

Tetraethylene glycol dimethyl ether

AFM:

Atomic force microscopy

PE:

Polymer electrolyte

CPE:

Composite polymer electrolyte

DMF:

Dimethylformamide

DMAc:

Dimethylacetamide

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  Google Scholar 

  2. Buonomenna MG, Bae J, (2017) Sodium-ion batteries: a realistic alternative to lithium-ion batteries? Nanosci Nanotechnol Asia 7(2):139–154. https://doi.org/10.2174/2210681206666161019145001

    Article  CAS  Google Scholar 

  3. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4):18013. https://doi.org/10.1038/natrevmats.2018.13

    Article  Google Scholar 

  4. Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage, WIREs Energy and Environment 4(3):253–278. https://doi.org/10.1002/wene.136

    Article  CAS  Google Scholar 

  5. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries, Advanced Functional Materials 23(8):947–958. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  6. Murugadoss V, Arunachalam S, Elayappan V, Angaiah S (2018) Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics 24(12):4071–4080. https://doi.org/10.1007/s11581-018-2540-4

    Article  CAS  Google Scholar 

  7. Solarajan AK, Murugadoss V, Angaiah S (2016) Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl Mater Today 5:33–40. https://doi.org/10.1016/j.apmt.2016.09.002

    Article  Google Scholar 

  8. Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294(1):8–15. https://doi.org/10.1016/j.memsci.2007.01.025

    Article  CAS  Google Scholar 

  9. Kalyana Sundaram NT, Subramania A (2007) Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 52(15):4987–4993. https://doi.org/10.1016/j.electacta.2007.01.066

    Article  CAS  Google Scholar 

  10. Matios E, Wang H, Wang C, Li W (2019) Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind Eng Chem Res 58(23):9758–9780. https://doi.org/10.1021/acs.iecr.9b02029

    Article  CAS  Google Scholar 

  11. Zhou C, Bag S, Thangadurai V (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3(9):2181–2198. https://doi.org/10.1021/acsenergylett.8b00948

    Article  CAS  Google Scholar 

  12. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  13. Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  14. Keller M, Varzi A, Passerini S (2018) Hybrid electrolytes for lithium metal batteries. J Power Sources 392:206–225. https://doi.org/10.1016/j.jpowsour.2018.04.099

    Article  CAS  Google Scholar 

  15. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 57(1):102–120. https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  16. Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47(6):2020–2064. https://doi.org/10.1039/C7CS00464H

    Article  CAS  Google Scholar 

  17. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  18. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  19. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  Google Scholar 

  20. Tong Z, Wang S-B, Liao Y-K, Hu S-F, Liu R-S (2020) Interface between solid-state electrolytes and Li-metal anodes: issues, materials, and processing routes. ACS Appl Mater Interfaces 12(42):47181–47196. https://doi.org/10.1021/acsami.0c13591

    Article  CAS  Google Scholar 

  21. Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215. https://doi.org/10.1016/j.ensm.2020.08.014

    Article  Google Scholar 

  22. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R (2019) Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application 31(21):1808393. https://doi.org/10.1002/adma.201808393

    Article  CAS  Google Scholar 

  23. Lu Y, Li L, Zhang Q, Niu Z, Chen J (2018) Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9):1747–1770. https://doi.org/10.1016/j.joule.2018.07.028

    Article  CAS  Google Scholar 

  24. Tarascon J-M (2020) Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4(8):1616–1620. https://doi.org/10.1016/j.joule.2020.06.003

    Article  Google Scholar 

  25. Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120(14):6783–6819. https://doi.org/10.1021/acs.chemrev.9b00531

    Article  CAS  Google Scholar 

  26. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 21:308–334. https://doi.org/10.1016/j.ensm.2019.06.021

    Article  Google Scholar 

  27. Qiao L, Judez X, Rojo T, Armand M, Zhang H (2020) Review–polymer electrolytes for sodium batteries. J Electrochem Soc 167(7) 070534. https://doi.org/10.1149/1945-7111/ab7aa0

    Article  CAS  Google Scholar 

  28. Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels 34(8):9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111

    Article  CAS  Google Scholar 

  29. Zhang H, Chen F, Carrasco J (2021) Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Mater 36:77–90. https://doi.org/10.1016/j.ensm.2020.12.014

    Article  Google Scholar 

  30. Maurya DK, Murugadoss V, Guo Z, Angaiah S (2021) Designing Na2Zn2TeO6-embedded 3D-nanofibrous poly(vinylidenefluoride)-co-hexafluoropropylene-based nanohybrid electrolyte via electrospinning for durable sodium-ion capacitors. ACS Appl Energy Mater 4(8):8475–8487. https://doi.org/10.1021/acsaem.1c01682

    Article  CAS  Google Scholar 

  31. Voropaeva DY, Novikova SA, Yaroslavtsev AB (2020) Polymer electrolytes for metal-ion batteries. Russ Chem Rev 89(10):1132–1155. https://doi.org/10.1070/rcr4956

    Article  CAS  Google Scholar 

  32. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. 7(522). https://doi.org/10.3389/fchem.2019.00522

  33. Wang Y, Song S, Xu C, Hu N, Molenda J, Lu L (2019) Development of solid-state electrolytes for sodium-ion battery–a short review. Nano Mater Sci 1(2):91–100. https://doi.org/10.1016/j.nanoms.2019.02.007

    Article  Google Scholar 

  34. Han L, Lehmann ML, Zhu J, Liu T, Zhou Z, Tang X, Heish C-T, Sokolov AP, Cao P, Chen XC, Saito T (2020) Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front Energy Res 8(202). https://doi.org/10.3389/fenrg.2020.00202

  35. Tang S, Guo W, Fu Y (2021) Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater 11(2):2000802. https://doi.org/10.1002/aenm.202000802

    Article  CAS  Google Scholar 

  36. Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y-S, Chen L (2018) Solid-state sodium batteries. Adv Energy Mater 8(17):1703012. https://doi.org/10.1002/aenm.201703012

    Article  CAS  Google Scholar 

  37. Wehner LA, Mittal N, Liu T, Niederberger M (2021) Multifunctional batteries: flexible, transient, and transparent. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c01318

    Article  Google Scholar 

  38. Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan C-W, Armand M, Chen L, Xu K, Shi S (2020) Mobile ions in composite solids. Chem Rev 120(9):4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760

    Article  CAS  Google Scholar 

  39. Zhang S, Yao Y, Yu Y (2021) Frontiers for room-temperature sodium–sulfur batteries. ACS Energy Lett 6(2):529–536. https://doi.org/10.1021/acsenergylett.0c02488

    Article  CAS  Google Scholar 

  40. Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H (2020) Review–polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J Electrochem Soc 167(7):070524. https://doi.org/10.1149/1945-7111/ab7221

    Article  CAS  Google Scholar 

  41. Choudhury S, Stalin S, Vu D, Warren A, Deng Y, Biswal P, Archer LA (2019) Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 10(1):4398. https://doi.org/10.1038/s41467-019-12423-y

    Article  CAS  Google Scholar 

  42. Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y-S, Zhou Z, Li H, Huang X, Chen L (2016) A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 4(41):15823–15828. https://doi.org/10.1039/C6TA07590H

    Article  CAS  Google Scholar 

  43. Feng J, Wang L, Chen Y, Wang P, Zhang H, He X (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 8(1):2. https://doi.org/10.1186/s40580-020-00252-5

    Article  CAS  Google Scholar 

  44. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300. https://doi.org/10.1016/j.ensm.2020.10.006

    Article  Google Scholar 

  45. Li S, Zhang S-Q, Shen L, Liu Q, Ma J-B, Lv W, He Y-B, Yang Q-H (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 7(5):1903088. https://doi.org/10.1002/advs.201903088

    Article  CAS  Google Scholar 

  46. Qian S, Chen H, Wu Z, Li D, Liu X, Tang Y, Zhang S (2021) Designing ceramic/polymer composite as highly ionic conductive solid-state electrolytes. Batteries Supercaps 4(1):39–59. https://doi.org/10.1002/batt.202000149

    Article  CAS  Google Scholar 

  47. Lim YJ, Han J, Kim HW, Choi Y, Lee E, Kim Y (2020) An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries. J Mater Chem A 8(29):14528–14537. https://doi.org/10.1039/D0TA06024K

    Article  CAS  Google Scholar 

  48. Kim J-K, Lim YJ, Kim H, Cho G-B, Kim Y (2015) A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 8(12):3589–3596. https://doi.org/10.1039/C5EE01941A

    Article  CAS  Google Scholar 

  49. Cheng M, Qu T, Zi J, Yao Y, Liang F, Ma W, Yang B, Dai Y, Lei Y (2020) A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 31(42):425401. https://doi.org/10.1088/1361-6528/aba059

    Article  CAS  Google Scholar 

  50. Coustan L, Tarascon J-M, Laberty-Robert C (2019) Thin fiber-based separators for high-rate sodium ion batteries. ACS Appl Energy Mater 2(12):8369–8375. https://doi.org/10.1021/acsaem.9b01821

    Article  CAS  Google Scholar 

  51. Chen M, Zhang Y, Xing G, Tang Y (2020) Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials. Front Chem 8(152). https://doi.org/10.3389/fchem.2020.00152

  52. Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, Passerini S (2016) Comprehensive insights into the reactivity of electrolytes based on sodium ions. Chem Sus Chem 9(5):462–471. https://doi.org/10.1002/cssc.201501605

    Article  CAS  Google Scholar 

  53. Zhang H, Hasa I, Passerini S (2018) Sodium-ion batteries: beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 8(17):1870082. https://doi.org/10.1002/aenm.201870082

    Article  CAS  Google Scholar 

  54. Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827. https://doi.org/10.1021/cr500232y

    Article  CAS  Google Scholar 

  55. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ion 312:8–16. https://doi.org/10.1016/j.ssi.2017.10.004

    Article  CAS  Google Scholar 

  56. Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52(3):686–694. https://doi.org/10.1021/acs.accounts.8b00566

    Article  CAS  Google Scholar 

  57. Chen S, Feng F, Che H, Yin Y, Ma Z-F (2021) High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J 406:126736. https://doi.org/10.1016/j.cej.2020.126736

    Article  CAS  Google Scholar 

  58. Zhang X, Wang X, Liu S, Tao Z, Chen J (2018) A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res 11(12):6244–6251. https://doi.org/10.1007/s12274-018-2144-3

    Article  CAS  Google Scholar 

  59. Chen S, Che H, Feng F, Liao J, Wang H, Yin Y, Ma Z-F (2019) Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries. ACS Appl Mater Interfaces 11(46):43056–43065. https://doi.org/10.1021/acsami.9b11259

    Article  CAS  Google Scholar 

  60. Yi Q, Zhang W, Li S, Li X, Sun C (2018) Durable sodium battery with a flexible Na3Zr2Si2PO12–PVDF–HFP composite electrolyte and sodium/carbon cloth anode. ACS Appl Mater Interfaces 10(41):35039–35046. https://doi.org/10.1021/acsami.8b09991

    Article  CAS  Google Scholar 

  61. Devi C, Gellanki J, Pettersson H, Kumar S (2021) High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci Rep 11(1):20180. https://doi.org/10.1038/s41598-021-99663-5

    Article  CAS  Google Scholar 

  62. Yu X, Xue L, Goodenough JB, Manthiram A (2021) Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv Func Mater 31(2):2002144. https://doi.org/10.1002/adfm.202002144

    Article  CAS  Google Scholar 

  63. Zhang Z, Xu K, Rong X, Hu Y-S, Li H, Huang X, Chen L (2017) Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. J Power Sources 372:270–275. https://doi.org/10.1016/j.jpowsour.2017.10.083

    Article  CAS  Google Scholar 

  64. Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1(1):132–138. https://doi.org/10.1021/acsmaterialslett.9b00103

    Article  CAS  Google Scholar 

  65. Wu J-F, Yu Z-Y, Wang Q, Guo X (2020) High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater 24:467–471. https://doi.org/10.1016/j.ensm.2019.07.012

    Article  Google Scholar 

  66. Koduru HK, Marinov YG, Hadjichristov GB, Scaramuzza N (2019) Characterization of polymer/liquid crystal composite based electrolyte membranes for sodium ion battery applications. Solid State Ion 335:86–96. https://doi.org/10.1016/j.ssi.2019.02.021

    Article  CAS  Google Scholar 

  67. Hiraoka K, Kato M, Kobayashi T, Seki S (2020) Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J Phys Chem C 124(40):21948–21956. https://doi.org/10.1021/acs.jpcc.0c05334

    Article  CAS  Google Scholar 

  68. Verma H, Mishra K, Rai DK (2020) Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J Solid State Electrochem 24(3):521–532. https://doi.org/10.1007/s10008-019-04490-4

    Article  CAS  Google Scholar 

  69. Wang Y, Wang Z, Sun J, Zheng F, Kotobuki M, Wu T, Zeng K, Lu L (2020) Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous poly(ethylene oxide) for all-solid-state Na battery. J Power Sources 454:227949. https://doi.org/10.1016/j.jpowsour.2020.227949

    Article  CAS  Google Scholar 

  70. Xie D, Zhang M, Wu Y, Xiang L, Tang Y (2020) A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Func Mater 30(5):1906770. https://doi.org/10.1002/adfm.201906770

    Article  CAS  Google Scholar 

  71. Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702. https://doi.org/10.1016/j.jpowsour.2013.09.137

    Article  CAS  Google Scholar 

  72. Dinachandra Singh M, Dalvi A (2021) Ionic transport in NASICON-polymer hybrids: an assessment using X-ray photoelectron spectroscopy. Appl Surf Sci 536:147792. https://doi.org/10.1016/j.apsusc.2020.147792

    Article  CAS  Google Scholar 

  73. Chandra A, Chandra A, Thakur K (2016) Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nano composite polymer electrolytes. Arab J Chem 9(3):400–407. https://doi.org/10.1016/j.arabjc.2013.07.014

    Article  CAS  Google Scholar 

  74. Chandra A, Chandra A, Thakurb K (2012) Na+ ion conducting hot-pressed nano composite polymer electrolytes. Port Electrochim Acta 30:81–88. https://doi.org/10.4152/pea.201202081

    Article  CAS  Google Scholar 

  75. Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177. https://doi.org/10.1002/app.45177

    Article  CAS  Google Scholar 

  76. Arunachalam S, Kirubasankar B, Pan D, Liu H, Yan C, Guo Z, Angaiah S (2020) Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. https://doi.org/10.1016/j.gee.2020.07.021

    Article  Google Scholar 

  77. Sundaram NTK, Subramania A (2007) Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process. J Membr Sci 289(1):1–6. https://doi.org/10.1016/j.memsci.2006.12.002

    Article  CAS  Google Scholar 

  78. Maurya DK, Murugadoss V, Angaiah S (2019) All-solid-state electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/Li7.1La3Ba0.05Zr1.95O12 nanohybrid membrane electrolyte for high-energy Li-ion capacitors. J Phys Chem C 123(50):30145–30154. https://doi.org/10.1021/acs.jpcc.9b09264

    Article  CAS  Google Scholar 

  79. Maurya DK, Balan B, Murugadoss V, Yan C, Angaiah S (2020) A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Mater Today Commun 25:101497. https://doi.org/10.1016/j.mtcomm.2020.101497

    Article  CAS  Google Scholar 

  80. Solarajan AK, Murugadoss V, Angaiah S (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7(1):45390. https://doi.org/10.1038/srep45390

    Article  CAS  Google Scholar 

  81. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  82. Villaluenga I, Bogle X, Greenbaum S, Gil de Muro I, Rojo T, Armand M (2013) Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes. J Mater Chem A 1(29):8348–8352. https://doi.org/10.1039/C3TA11290J

    Article  CAS  Google Scholar 

  83. Bag S, Zhou C, Reid S, Butler S, Thangadurai V (2020) Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J Power Sources 454:227954. https://doi.org/10.1016/j.jpowsour.2020.227954

    Article  CAS  Google Scholar 

  84. Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31(16):13249–13260. https://doi.org/10.1007/s10854-020-03877-8

    Article  CAS  Google Scholar 

  85. Dimri MC, Kumar D, Aziz SB, Mishra K (2021) ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics. https://doi.org/10.1007/s11581-020-03899-6

    Article  Google Scholar 

  86. Ma X, Qiao F, Qian M, Ye Y, Cao X, Wei Y, Li N, Sha M, Zi Z, Dai J (2021) Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries. Scripta Mater 190:153–157. https://doi.org/10.1016/j.scriptamat.2020.08.053

    Article  CAS  Google Scholar 

  87. Xu L, Li J, Deng W, Li L, Zou G, Hou H, Huang L, Ji X (2021) Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Mater Chem Front 5(3):1315–1323. https://doi.org/10.1039/D0QM00541J

    Article  CAS  Google Scholar 

  88. Ma C, Dai K, Hou H, Ji X, Chen L, Ivey DG, Wei W (2018) High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv Sci 5(5):1700996. https://doi.org/10.1002/advs.201700996

    Article  CAS  Google Scholar 

  89. Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182. https://doi.org/10.1016/j.jpowsour.2004.12.009

    Article  CAS  Google Scholar 

  90. Subramania A, Sundaram NTK, Priya AR, Gangadharan R, Vasudevan T (2005) Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. J Appl Polym Sci 98(5):1891–1896. https://doi.org/10.1002/app.22114

    Article  CAS  Google Scholar 

  91. Subramania A, Kalyana Sundaram NT, Sukumar N (2005) Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process. J Power Sources 141(1):188–192. https://doi.org/10.1016/j.jpowsour.2004.09.001

    Article  CAS  Google Scholar 

  92. Rao MC, Koutavarapu R, Kumar KV (2019) Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films. Mater Sci Semicond Process 89:41–50. https://doi.org/10.1016/j.mssp.2018.08.030

    Article  CAS  Google Scholar 

  93. Gao H, Guo B, Song J, Park K, Goodenough JB (2015) A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries. Adv Energy Mater 5(9):1402235. https://doi.org/10.1002/aenm.201402235

    Article  CAS  Google Scholar 

  94. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

    Article  CAS  Google Scholar 

  95. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  96. Yu X, Xue L, Goodenough JB, Manthiram A (2021) All-solid-state sodium batteries with a polyethylene glycol diacrylate–Na3Zr2Si2PO12 composite electrolyte. Adv Energy Sustain Res 2(1):2000061. https://doi.org/10.1002/aesr.202000061

    Article  Google Scholar 

  97. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  98. Mauger A, Julien CM (2020) State-of-the-art electrode materials for sodium-ion batteries. Materials 13(16). https://doi.org/10.3390/ma13163453

  99. Bocharova V, Sokolov AP (2020) Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53(11):4141–4157. https://doi.org/10.1021/acs.macromol.9b02742

    Article  CAS  Google Scholar 

  100. Torres FG, De-la-Torre GE, Gonzales KN, Troncoso OP (2020) Bacterial-polymer-based electrolytes: recent progress and applications. ACS Appl Energy Mater 3(12):11500–11515. https://doi.org/10.1021/acsaem.0c02195

    Article  CAS  Google Scholar 

Download references

Funding

Dr. AS gratefully acknowledges the UGC, New Delhi, for their financial supports under the BSR Mid-Career award scheme (No. F.19–214/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramania Angaiah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, D.K., Dhanusuraman, R., Guo, Z. et al. Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Adv Compos Hybrid Mater 5, 2651–2674 (2022). https://doi.org/10.1007/s42114-021-00412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00412-z

Keywords

Navigation