Skip to main content
Log in

Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The present study investigates the effect of additional carbon source, in the form of carbon nanotubes (CNTs), on mechanical and thermal properties of carbon fiber reinforced silicon carbide (C/C-SiC) ceramic matrix composites (CMC) produced by liquid silicon infiltration (LSI) technique. The CNTs used in this study were impregnated into the C/C preforms before the liquid silicon infiltration stage. The results showed that the addition of excess carbon to the C/C preforms in the form of CNTs enhanced Si infiltration efficiency significantly resulting in C/C-SiC composites with higher density and microstructural uniformity. Accordingly, the addition of CNTs improved the flexural strength of the composites by 40% with respect to no-CNT-containing composites due to a lower amount of residual porosity and additional reinforcement effect of the unreacted CNTs. The thermal conductivity of the resulting C/C-SiC composites has been also increased by 31% and 18% parallel and perpendicular to the carbon fiber–woven fabric surface, respectively, by CNT addition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krenkel W, Berndt F (2005) C/C–SiC composites for space applications and advanced friction systems. Mater Sci Eng A 412:177–181

    Article  CAS  Google Scholar 

  2. Li Z, Xiao P, Xiong X, Huang B (2013) Preparation and tribological properties of C fibre reinforced C/SiC dual matrix composites fabrication by liquid silicon infiltration. Solid State Sci 16:6–12

    Article  CAS  Google Scholar 

  3. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170

    Article  CAS  Google Scholar 

  4. Wang Y, Wu H (2010) Friction surface evolution of carbon fiber reinforced carbon/silicon carbide (Cf/C-SiC) composites. J Eur Ceram Soc 30:3187–3201

    Article  CAS  Google Scholar 

  5. Patel M, Saurabh K, Bhanu P, Subrahmanyam J (2012) High temperature C/C–SiC composite by liquid silicon infiltration: a literature review. Bull Mater Sci 35:63–73

  6. Narotham P, Lamon J (2010) Ceramic matrix composites. Wiley, Hoboken

    Google Scholar 

  7. Gern FH, Kochendörfer R (1997) Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation. Composites Part A 28:355–364

    Article  Google Scholar 

  8. Hillig BW (1994) Making ceramic composites by melt infiltration. Am Ceram Soc Bull 73:56–62

    CAS  Google Scholar 

  9. Krenkel W (2003) C/C-SiC composites for hot structures and advanced friction systems. Ceram Eng Sci Proc 24:583

    Article  CAS  Google Scholar 

  10. Krenkel W (2001) Cost effective processing of CMC composites by melt infiltration (LSI-process). Ceram Eng Sci Proc 22:443-454

  11. Wang J, Lin M, Xu Z, Zhang Y, Shi Z, Qian J, Qiao G, Jin Z (2009) Microstructure and mechanical properties of C/C–SiC composites fabricated by a rapid processing method. J Eur Ceram Soc 29:3091–3097

    Article  CAS  Google Scholar 

  12. Kochendorfer R, Lutzenburger N (2001) Application of CMCs made via the liquid silicon infiltration (LSI) technique. In: Krenkel W (ed) High temperature ceramic matrix composite. Springer, Berlin, pp 277–287

    Google Scholar 

  13. Wang F, Cheng L, Liang S (2019) Effects of pore on thermal diffusivity and thermal radiation properties of C/SiC composites at high temperatures. Appl Compos Mater 26:1411–1422

    Article  Google Scholar 

  14. Chen J, Wang Y, Cheng L, Zhang L (2011) Thermal diffusivity of three-dimensional needled C/SiC–TaC composites. Ceram Int 37:3095–3099

    Article  CAS  Google Scholar 

  15. Cheng L, Xu Y, Zhang Q, Zhang L (2003) Thermal diffusivity of 3D C/SiC composites from roomtemperature to 1400 °C. Carbon 41:707–711

    Article  CAS  Google Scholar 

  16. Su F, Huang F (2019) Microscopic mechanism of the high-temperature strength behaviour of a C/SiC composite. Appl Compos Mater 26:1059–1071

  17. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotube. Carbon 33:925–930

    Article  CAS  Google Scholar 

  18. Ebbesen TW, Lezec HL, Hiura H, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  CAS  Google Scholar 

  19. Ramirez AP (2005) Carbon nanotubes for science and technology. Bell Labs Tech J 10:171

    Article  Google Scholar 

  20. Han D, Mei H, Xiao S, Dassios KG, Chenga L (2018) A review on the processing technologies of carbon nanotube/silicon carbide composites. J Eur Ceram Soc 38:3695–3708

    Article  CAS  Google Scholar 

  21. Dzunda R, Fides M, Hanotko M (2019) Mechanical, physical properties and tribological behaviour of silicon carbide composites with addition of carbon nanotubes. Int J Refract Met Hard Mater 81:272–280

    Article  CAS  Google Scholar 

  22. Lanfant B, Leconte Y, Debski N, Bonnefont G, Pinault M (2019) Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceram Int 45:2566–2575

    Article  CAS  Google Scholar 

  23. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  CAS  Google Scholar 

  24. Choa J, Boccaccini A, Shaffer P (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951

    Article  CAS  Google Scholar 

  25. Wang H, Li X, Ma J, Li G, Hu T (2012) Fabrication of multi-walled carbon nanotube-reinforced carbon fiber/silicon carbide composites by polymer infiltration and pyrolysis process. Compos Sci Technol 72:461–466

    Article  CAS  Google Scholar 

  26. Yu H, Zhou X, Zhang W, Peng H, Zhang C, Sun K (2011) Properties of carbon nano-tubes–Cf/SiC composite by precursor infiltration and pyrolysis process. Mater Des 32:3516–3520

    Article  CAS  Google Scholar 

  27. Hua J, Donga S, Wua B, Zhanga X, Wang Z (2013) Mechanical and thermal properties of Cf/SiC composites reinforced with carbon nanotube grown in situ. Ceram Int 39:3387–3391

    Article  CAS  Google Scholar 

  28. Chen S, Feng Y, Qin M, Ji T, Feng W (2017) Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 116:84–93

    Article  CAS  Google Scholar 

  29. Tülbez S (2015) Processing and characterization of carbon fiber reinforced silicon carbide (C/C-SiC) matrix composites. Master Thesis. Middle East Technical University

  30. Heidenreich B, Krenkel W, Lexow B (2003) Development of CMC-materials for lightweight armor. Ceram Eng Sci Proc 24:375

    Article  CAS  Google Scholar 

  31. Kumar A, Kumar S, Rohani D (2009) Capillary infiltration studies of liquids 3D-stiched C-C preforms: kinetics of silicon infiltration. J Eur Ceram Soc 29:2651–2657

    Article  CAS  Google Scholar 

  32. Shimoda K, Hinoki T, Kohyama A (2010) Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos Sci Technol 70:387–392

    Article  CAS  Google Scholar 

  33. Wen NC, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Phys Lett 85:3549

    Google Scholar 

  34. Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcan F. Dericioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tülbez, S., Esen, Z. & Dericioglu, A.F. Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv Compos Hybrid Mater 3, 177–186 (2020). https://doi.org/10.1007/s42114-020-00155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00155-3

Keywords

Navigation