Skip to main content
Log in

Prediction of cost and duration of building construction using artificial neural network

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this research study, the investigation of building details on the construction project cost and duration using artificial neural networks (ANNs) which possesses the ability to generalize complex input–output relationships between given datasets was carried out. From relevant literature review, expert judgment, and extensive field survey, system database were generated with six input factors, namely, activities count (Act.), building area (BA), foundation type (FT), floors number (storey), class of clients and contractors, and two output parameters (duration and cost). The results obtained indicated higher cost and duration variations for the projects given to sole and mini-contractors compared to medium and multi-companies because of inadequate technical advancements and resource personnel to coordinate and manage the construction project activities to prevent cost overrun. The bidding cost and negotiation fees were also observed to effect the choice of contractors’ class recruited for the construction job as the clients with higher financial capacity such as government and cooperate organizations negotiated and hired the multi and medium companies. Feed-forward back-propagation network was used in the smart intelligent modeling development in MATLAB using Levenberg–Marquardt training algorithm and mean squared error (MSE) performance criteria to achieve (6-22-2) optimized network architecture. Using loss-function parameters (mean absolute error, MAE and root mean squared error, MSE and multiple linear regression, MLR) statistical method, the developed ANN-model prediction performance was evaluated. The computed results showed good correlation between ANN model and actual results with average R2 of 0.99995 better than MLR result of 0.6986; also, MAE of 0.2952 and RMSE of 0.5638 were calculated which indicates a robust model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • AbouRizk, S. (2010). Role of simulation in construction engineering and management. Journal of Construction Engineering and Management, 136, 1140–1153.

    Article  Google Scholar 

  • AbouRizk, S., & Halpin, D. (1992). Statistical properties of construction data. Journal of Construction Engineering and Management, 118, 525–544.

    Article  Google Scholar 

  • Abu Hammad, A., Alhaj Ali, S., Sweis, G., & Bashir, A. (2008). Prediction Model for Construction Cost and Duration in Jordan. Jordan Journal of Civil Engineering, 2(3), 250–266.

    Google Scholar 

  • Alaneme, G. U., Attah, I. C., Mbadike, E. M., Dimonyeka, M. U., Usanga, I. N., & Nwankwo, H. F. (2022a). Mechanical strength optimization and simulation of cement kiln dust concrete using extreme vertex design method. Nanotechnology for Environmental Engineering, 7, 467–490. https://doi.org/10.1007/s41204-021-00175-4

    Article  Google Scholar 

  • Alaneme, G. U., Dimonyeka, M. U., Ezeokpube, G. C., Uzoma, I. I., & Udousoro, I. M. (2021b). Failure assessment of dysfunctional flexible pavement drainage facility using fuzzy analytical hierarchical process. Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-021-00487-z

    Article  Google Scholar 

  • Alaneme, G. U., & Mbadike, E. (2019). Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Applied Sciences., 1, 1514. https://doi.org/10.1007/s42452-019-1504-2

    Article  Google Scholar 

  • Alaneme, G. U., & Mbadike, E. M. (2021a). Optimisation of strength development of bentonite and palm bunch ash concrete using fuzzy logic. International Journal of Sustainable Engineering, 14(4), 835–851. https://doi.org/10.1080/19397038.2021.1929549

    Article  Google Scholar 

  • Alaneme, G. U., & Mbadike, E. M. (2021b). Experimental investigation of Bambara nut shell ash in the production of concrete and mortar. Innovative Infrastructure Solutions., 6, 66. https://doi.org/10.1007/s41062-020-00445-1

    Article  Google Scholar 

  • Alaneme, G. U., Mbadike, E. M., Attah, I. C., & Udousoro, I. M. (2022b). Mechanical behaviour optimization of saw dust ash and quarry dust concrete using adaptive neuro-fuzzy inference system. Innovative Infrastructure Solutions., 7, 122. https://doi.org/10.1007/s41062-021-00713-8

    Article  Google Scholar 

  • Alaneme, G. U., Mbadike, E. M., Iro, U. I., Udousoro, I. M., & Ifejimalu, W. C. (2021a). Adaptive neuro-fuzzy inference system prediction model for the mechanical behaviour of rice husk ash and periwinkle shell concrete blend for sustainable construction. Asian Journal of Civil Engineering, 2021(22), 959–974. https://doi.org/10.1007/s42107-021-00357-0

    Article  Google Scholar 

  • Alaneme, G. U., Onyelowe, K. C., Onyia, M. E., Van Bui, D., Mbadike, E. M., Dimonyeka, M. U., Attah, I. C., Ogbonna, C., Iro, U. I., Kumari, S., Firoozi, A. A., & Oyagbola, I. (2020a). Modelling of the swelling potential of soil treated with quicklime-activated rice husk ash using fuzzy logic. Umudike Journal of Engineering and Technology, 6(1), 1–22. https://doi.org/10.33922/j.ujet_v6i1_1

    Article  Google Scholar 

  • Alaneme, G.U., Onyelowe, K.C., Onyia, M.E., Bui Van, D., Mbadike, E.M., Ezugwu, C.N., Dimonyeka, M.U., Attah, I.C., Ogbonna, C., Abel, C., Ikpa, C.C., & Udousoro I.M. (2020b). Modeling volume change properties of hydrated-lime activated rice husk ash (HARHA) modifed soft soil for construction purposes by artifcial neural network (ANN). Umudike Journal of Engineering and Technology (UJET); 6(1):88–110; Michael Okpara University of Agriculture, Umudike, Print ISSN: 2536–7404, Electronic ISSN:2545–5257; http://ujetmouau.net; https://doi.org/10.33922/j.ujet_v6i1_9

  • AlSehaimi, A., & Koskela, L. (2008). What Can be Learned from Studies on Delay in Construction? Proceedings for the 16th Annual Conference of the International Group for Lean Construction, 95–106.

  • Ambrule, V. R., & Bhirud, A. N. (2017). Use of artificial neural network for pre design cost estimation of building projects. Interational Journal on Recent and Innovation Trends in Computing and Communication, 5(2), 173–176.

    Google Scholar 

  • Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4), 349–357.

    Article  Google Scholar 

  • Ballesteros-Perez, P. (2017). M-PERT: Manual project-duration estimation technique for teaching scheduling Basics. Journal of Construction Engineering and Management. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001358

    Article  Google Scholar 

  • Ballesteros-Perez, P., Larsen, G. D., & Gonzalez-Cruz, M. C. (2018). Do projects really end late? On the shortcomings of the classical scheduling techniques. Journal of Technology and Science Education, 8(1), 86–102.

    Article  Google Scholar 

  • Banerjee, A., & Paul, A. (2008). On path correlation and PERT bias. European Journal of Operational Research, 189(3), 1208–1216.

    Article  MathSciNet  MATH  Google Scholar 

  • Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2000). Discrete-Event System Simulation. New Jersey: Prentice Hall Inc.

    Google Scholar 

  • Batselier, J., & Vanhoucke, M. (2015). Construction and evaluation framework for a real life project database. International Journal of Project Management, 33(3), 697–710.

    Article  Google Scholar 

  • Çelik, S., & Tan, Ö. (2005). Determination of preconsolidation pressure with artificial neural network. Civil Engineering and Environmental Systems, 22, 217–231. https://doi.org/10.1080/10286600500383923

    Article  Google Scholar 

  • Chan, A., & Chan, D. (2004). Developing a benchmark model for project construction time performance in Hong Kong. Building and Environment, 39, 339–349.

    Article  Google Scholar 

  • Cho, S. (2009). A linear Bayesian stochastic approximation to update project duration estimates. European Journal of Operational Research, 196(2), 585–593.

    Article  MATH  Google Scholar 

  • Chudley, R., & Greeno, R. (2016). Building Construction Handbook. Abingdon: Routledge.

    Book  Google Scholar 

  • Elmousalami, H. H. (2020). Artificial intelligence and parametric construction cost estimate modeling: State-of-the-art review. Journal of Construction Engineering and Management, 146(1), 03119008. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001678

    Article  Google Scholar 

  • Erzin, Y., Gumaste, S. D., Gupta, A. K., & Singh, D. N. (2009). ANN models for determining hydraulic conductivity of compacted fine grained soils. Canadian Geotechnical Journal, 46, 955–968.

    Article  Google Scholar 

  • Erzin, Y., Rao, B. H., Patel, A., Gumaste, S. D., Gupta, A. K., & Singh, D. N. (2010). Artificial neural network models for predicting of electrical resistivity of soils from their thermal resistivity. International Journal of Thermal Sciences, 49, 118–130.

    Article  Google Scholar 

  • Fellows, R., & Liu, A. (2008). Research methods for construction. WileyBlackwell.

    Google Scholar 

  • Feng, G. L., & Li, L. (2013). Application of genetic algorithm and neural network in construction cost estimate. Advanced Materials Research, 756–759, 3194–3198. https://doi.org/10.4028/www.scientific.net/amr.756-759.3194

    Article  Google Scholar 

  • Ferentinou, M., & Fakir, M. (2017). An ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and Igneous Rocks in Eastern KwaZulu-Natal. Procedia Engineering, 191(2017), 1117–1125. https://doi.org/10.1016/j.proeng.2017.05.286 Symp Int Soc Rock Mech Proc Eng.

    Article  Google Scholar 

  • Flintsch, G. W., & Chen, C. (2004). Soft computing applications in infrastructure management. Journal of Infrastructure Systems, 10(4), 157–166. https://doi.org/10.1061/(ASCE)1076-0342(2004)10:4(157)

    Article  Google Scholar 

  • Flood, I., & Kartam, N. (1994). Neural network in civil engineering II: Systems and applications. J Comput Civ Eng ASCE, 8(2), 149–162.

    Article  Google Scholar 

  • Hwang, H. S., Kim, K. R., Suh, S. W., Kim, C. D., & Shin, D. W. (2002). Analysis of actual duration by effecting elements to duration estimate. Korean Journal of Construction Engineering and Management, 3(3), 84–93.

    Google Scholar 

  • Ikpa, C. C., Alaneme, G. U., Mbadike, E. M., Nnadi, E., Chigbo, I. C., Abel, C., Udousoro, I. M., & Odum, L. O. (2021). Evaluation of water quality impact on the compressive strength of concrete. Jurnal Kejuruteraan, 33(3), 527–538. https://doi.org/10.17576/jkukm-2021-33(3)-15

    Article  Google Scholar 

  • Iranmanesh, A., & Kaveh, A. (1999). Structural optimization by gradient base neural networks. International Journal of Numerical Methods in Engineering, 46, 297–311.

    Article  MATH  Google Scholar 

  • Jin, R. Z., Han, S. W., Hyun, C. T., & Cha, Y. W. (2016). Application of case-based reasoning for estimating preliminary duration of building project. Journal of Management in Engineering. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001072

    Article  Google Scholar 

  • Kaka, A., & Price, A. D. F. (1991). Relationship between value and duration of construction projects. Construction Management and Economics, 9(4), 383–400. https://doi.org/10.1080/01446199100000030

    Article  Google Scholar 

  • Kaveh, A., Gholipour, Y., & Rahami, H. (2008). Optimal design of transmission towers using genetic algorithm and neural networks. International Journal of Space Structures, 1(23), 1–19.

    Article  Google Scholar 

  • Kaveh, A., & Iranmanesh, A. (1998). Comparative study of backpropagation and improved counterpropagation neural nets in structural analysis and optimization. International Journal of Space Structures, 13, 177–185.

    Article  Google Scholar 

  • Kaveh, A., & Rahimi-Bondarabady, H. A. (2004). Wavefront reduction using graphs, neural networks and genetic algorithm. International Journal for Numerical Methods in Engineering, 60, 1803–1815.

    Article  MATH  Google Scholar 

  • Kaveh, A., & Servati, H. (2001). Design of double layer grids using back-propagation neural networks. Computers and Structures, 79, 1561–1568.

    Article  Google Scholar 

  • Khosrowshahi, F., & Kaka, A. P. (1996). Estimation of project total cost and duration for housing projects in the UK. Building and Environment, 31(4), 375–383. https://doi.org/10.1016/0360-1323(96)00003-0

    Article  Google Scholar 

  • Kim, G. H., An, S.-H., & Kang, K. I. (2004). Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Building and Environment, 39(10), 1235–1242. https://doi.org/10.1016/j.buildenv.2004.02.013

    Article  Google Scholar 

  • Kisi, O., & Uncuoglu, E. (2005). Comparison of three back-propagation training algorithms for two case studies. Indian Journal of Engineering Materials Sciences, 12(2005), 434–442.

    Google Scholar 

  • Lin, M. C., Tseng, H. P., Ho, S. P., & Young, D. L. (2011). Developing a construction-duration model based on a historical dataset for building project. Journal of Civil Engineering and Management, 17(4), 529–539. https://doi.org/10.3846/13923730.2011.625641

    Article  Google Scholar 

  • Love, P. E. D., Tse, R. Y. C., & Edwards, D. J. (2005). Time-cost relationships in Australian building construction projects. Journal of Construction Engineering and Management, 131(2), 187–194. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:2(187)

    Article  Google Scholar 

  • Lowe, D., Emsley, M., & Harding, A. (2006). Predicting construction costs using multiple regression techniques. ASCE Journal of Construction Engineering and Management, 132(7), 750–758.

    Article  Google Scholar 

  • Lu, M. (2002). Enhancing project evaluation and review technique simulation through artificial neural network-based input modeling. Journal of Construction Engineering and Management, American Society of Civil Engineers, 128(5), 438–445.

    Google Scholar 

  • Mačková, D., & Bašková, R. (2014). Applicability of Bromilow’s time-cost model for residential projects in Slovakia. Selected Scientific Papers—Journal of Civil Engineering, 9(2), 5–12. https://doi.org/10.2478/sspjce-2014-0011

    Article  Google Scholar 

  • Mahamid, I., & Amund, A. (2010). Analysis of cost diverge in road construction projects. In: Proceedings of the 2010 Annual Conference of the Canadian Society for Civil Engineering, 9–12 June 2010, Winnipeg, Manitoba, Canada.

  • Mirahadi, F., & Zayed, T. (2016). Simulation-based construction productivity forecast using neural-network-driven fuzzy reasoning. Automation in Construction, 65, 102–115. https://doi.org/10.1016/j.autcon.2015.12.021

    Article  Google Scholar 

  • Nath, U. K., Goyal, M. K., & Nath, T. P. (2011). Prediction of compressive strength of concrete using neural network. International Journal of Emerging Trends in Engineering and Development, 1(1), 32–43.

    Google Scholar 

  • Onyelowe, K. C., Alaneme, G. U., Onyia, M. E., Van Bui, D., Diomonyeka, M. U., Nnadi, E., Ogbonna, C., Odum, L. O., Aju, D. E., Abel, C., Udousoro, I. M., & Onukwugha, E. (2021b). Comparative modeling of strength properties of hydrated-lime activated rice-husk-ash (HARHA) modified soft soil for pavement construction purposes by artificial neural network (ANN) and fuzzy logic (FL). Jurnal Kejuruteraan, 33(2), 365–384. https://doi.org/10.17576/jkukm-2021-33(2)-20

    Article  Google Scholar 

  • Onyelowe, K. C., Fazal, E. J., Michael, E. O., Ifeanyichukwu, C. O., Alaneme, G. U., & Chidozie, I. (2021a). Artificial intelligence prediction model for swelling potential of soil and quicklime activated rice husk ash blend for sustainable construction. Jurnal Kejuruteraan., 33(4), 845–852.

    Google Scholar 

  • Onyelowe, K. C., Jalal, F. E., Onyia, M. E., Onuoha, I. C., & Alaneme, G. U. (2021c). Application of gene expression programming to evaluate strength characteristics of hydrated-lime-activated rice husk ash-treated expansive soil. Applied Computational Intelligence and Soft Computing. https://doi.org/10.1155/2021/6686347

    Article  Google Scholar 

  • Owolabi, J. D., Amusan, L. M., Oloke, C. O., Olusanya, O., TunjiOlayeni, P., Owolabi, D., Peter, J., & Omuh, I. (2014). Causes and effect of delay on project construction delivery time. International Journal of Education and Research, 2(4), 197–208.

    Google Scholar 

  • Pakbaz, H. H. M. S., & Mehdizadeh, R. (2015). Comparison and evaluation of artificial neural network (ANN) training algorithms in predicting soil type classification. Bulletin of Environment, Pharmacology and Life Sciences, 4(1), 212–218.

    Google Scholar 

  • Park, H. I. L., & Lee, S. R. (2011). Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38, 472–481. https://doi.org/10.1016/j.compgeo.2011.02.011

    Article  Google Scholar 

  • Phillips, P. P., & Stawarski, C. A. (2008). Data collection: Planning for and collecting all types of data. Pfeiffer.

    Google Scholar 

  • Remon, F. A., Sherif, M. H., & Yasser, R. A. (2014). Smart optimization for mega construction projects using artificial intelligence. Alexandria Engineering Journal, 53(3), 591–606.

    Article  Google Scholar 

  • Rezaei, K., Guest, B., Friedrich, A., Fayazi, F., Nakhaei, M., Beitollahi, A., & Fatemi Aghda, S. M. (2009). Feed forward neural network and interpolation function models to predict the soil and subsurface sediments distribution in Bam Iran. Acta Geophysica, 57, 271–293. https://doi.org/10.2478/s11600-008-0073-3

    Article  Google Scholar 

  • Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480(1), 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.00

    Article  Google Scholar 

  • Rofooei, F. R., Kaveh, A., & Masteri-Farahani, F. (2011). Estimating the vulnerability of concrete moment resisting frame structures using artificial neural networks. International Journal of Operational Research, 3(1), 433–448.

    Google Scholar 

  • Samuel, E. I., Oboreh, & Snapp, J. (2015). Cost model for unit rate pricing of concrete in construction projects. International Journal of Construction Engineering and Management, 4, 149–158.

    Google Scholar 

  • Sevda, T., & Yusuf, D. (2020). Compressive analysis of MCR, ANN and ANFIS models for prediction of field capacity and permanent utility point for Bafra plain soils. Journal of Communications in Soils Science and Plant Analysis, 51(5), 604–621.

    Article  Google Scholar 

  • Sobhani, J., Najimi, M., Pourkhorshidi, A. R., & Parhizkar, T. (2010). Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Construction of Building Materials, 24, 709–718.

    Article  Google Scholar 

  • Teicholz, P. (1994). Forecasting final cost and budget of construction projects. Journal of Computing in Civil Engineering, 7(4), 511–529.

    Article  Google Scholar 

  • Thomas, N., Mak, M. Y., Skitmore, M., Lam, K. C., & Varnam, M. (2001). The predictive ability of Bromilow’s time–cost model. Construction Management and Economics, 19(2), 165173. https://doi.org/10.1080/01446190150505090

    Article  Google Scholar 

  • Uwanuakwa, I. D., Idoko, J. B., Mbadike, E., Resatoglu, R., & Alaneme, G. (2022). Application of deep learning in structural health management of concrete structures. Proceedings of the Institution of Civil Engineers Bridge Engineering. https://doi.org/10.1680/jbren.21.00063

    Article  Google Scholar 

  • Wang, W.-C., Bilozerov, T., Dzeng, R.-J., Hsiao, F.-Y., & Wang, K.-C. (2017). Conceptual cost estimations using neuro-fuzzy and multi-factor evaluation methods for building projects. Journal of Civil Engineering and Management, 23(1), 1–14. https://doi.org/10.3846/13923730.2014.948908

    Article  Google Scholar 

  • Wu, W., Guozhi, W., Yuanmin, Z., & Hongling, W. (2009). Genetic algorithm optimizing neural network for short-term load forecasting. International Forum on Information Technology and Applications, 2009, 583–585. https://doi.org/10.1109/ifita.2009.326

    Article  Google Scholar 

  • Yilmaz, I., & Yuksek, G. (2009). Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences, 46(4), 803–810.

    Article  Google Scholar 

  • Yu, W., & Skibniewski, M. J. (2010). Integrating neurofuzzy system with conceptual cost estimation to discover cost-related knowledge from residential construction projects. Journal of Computing in Civil Engineering, 24(1), 35–44. https://doi.org/10.1061/(ASCE)0887-3801(2010)24:1(35)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Uwadiegwu Alaneme.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujong, J.A., Mbadike, E.M. & Alaneme, G.U. Prediction of cost and duration of building construction using artificial neural network. Asian J Civ Eng 23, 1117–1139 (2022). https://doi.org/10.1007/s42107-022-00474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-022-00474-4

Keywords

Navigation