Skip to main content
Log in

Costate mapping for indirect trajectory optimization

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2022

This article has been updated

Abstract

Numerical solutions of optimal control problems are influenced by the appropriate choice of coordinates. The proposed method based on the variational approach to map costates between sets of coordinates and/or elements is suitable for solving optimal control problems using the indirect formalism of optimal control theory. The Jacobian of the nonlinear map between any two sets of coordinates and elements is a key component of costate vector mapping theory. A new solution for the class of planar, free-terminal-time, minimum-time, orbit rendezvous maneuvers is also presented. The accuracy of the costate mapping is verified, and its utility is demonstrated by solving minimum-time and minimum-fuel spacecraft trajectory optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Lantoine, G., Russell, R. P. A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 1: Theory. Journal of Optimization Theory and Applications, 2012, 154(2): 382–417.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lantoine, G., Russell, R. P. A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 2: Application. Journal of Optimization Theory and Applications, 2012, 154(2): 418–442.

    Article  MathSciNet  MATH  Google Scholar 

  3. Olivares, A., Staffetti, E. Switching time-optimal control of spacecraft equipped with reaction wheels and gas jet thrusters. Nonlinear Analysis: Hybrid Systems, 2018, 29: 261–282.

    MathSciNet  MATH  Google Scholar 

  4. Cerf, M. Fast solution of minimum-time low-thrust transfer with eclipses. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(7): 2699–2714.

    Article  Google Scholar 

  5. Li, T. B., Wang, Z. K., Zhang, Y. L. Multi-objective trajectory optimization for a hybrid propulsion system. Advances in Space Research, 2018, 62(5): 1102–1113.

    Article  Google Scholar 

  6. Chen, S. Y., Li, H. Y., Baoyin, H. X. Multi-rendezvous low-thrust trajectory optimization using costate transforming and homotopic approach. Astrophysics and Space Science, 2018, 363(6): 128.

    Article  MathSciNet  Google Scholar 

  7. Chertovskih, R., Karamzin, D., Khalil, N. T., Pereira, F. L. An indirect method for regular state-constrained optimal control problems in flow fields. IEEE Transactions on Automatic Control, 2021, 66(2): 787–793.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnans, F., Martinon, P., Trélat, E. Singular arcs in the generalized goddard’s problem. Journal of Optimization Theory and Applications, 2008, 139(2): 439–461.

    Article  MathSciNet  MATH  Google Scholar 

  9. Andrés-Martínez, O., Biegler, L. T., Flores-Tlacuahuac, A. An indirect approach for singular optimal control problems. Computers & Chemical Engineering, 2020, 139: 106923.

    Article  Google Scholar 

  10. Mall, K., Taheri, E. Unified trigonometrization method for solving optimal control problems in atmospheric flight mechanics. In: Proceedings of the AIAA Scitech 2020 Forum, 2020: AIAA 2020-0022.

  11. Mall, K., Taheri, E., Prabhu, P. Solving singular control problems using uniform trigonometrization method. AIChE Journal, 2021, 67(6): e17209.

    Article  Google Scholar 

  12. Conway, B. A. A survey of methods available for the numerical optimization of continuous dynamic systems. Journal of Optimization Theory and Applications, 2012, 152(2): 271–306.

    Article  MathSciNet  MATH  Google Scholar 

  13. Trélat, E. Optimal control and applications to aerospace: Some results and challenges. Journal of Optimization Theory and Applications, 2012, 154(3): 713–758.

    Article  MathSciNet  MATH  Google Scholar 

  14. Prussing, J. E. Illustration of the primer vector in time-fixed, orbit transfer. AIAA Journal, 1969, 7(6): 1167–1168.

    Article  Google Scholar 

  15. Carter, T. E. Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion. Dynamics and Control, 2000, 10(3): 219–227.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertrand, R., Epenoy, R. New smoothing techniques for solving Bang-Bang optimal control problems—Numerical results and statistical interpretation. Optimal Control Applications and Methods, 2002, 23(4): 171–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pan, X., Pan, B. F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem. IEEE Access, 2020, 8: 47845–47862.

    Article  Google Scholar 

  18. Pérez-Palau, D., Epenoy, R. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control. Celestial Mechanics and Dynamical Astronomy, 2018, 130(2): 21.

    Article  MathSciNet  MATH  Google Scholar 

  19. Aziz, J. D., Parker, J. S., Scheeres, D. J., Englander, J. A. Low-thrust many-revolution trajectory optimization via differential dynamic programming and a sundman transformation. The Journal of the Astronautical Sciences, 2018, 65(2): 205–228.

    Article  Google Scholar 

  20. Arya, V., Taheri, E., Junkins, J. L. Low-thrust gravity-assist trajectory design using optimal multimode propulsion models. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1280–1294.

    Article  Google Scholar 

  21. Mall, K., Grant, M. J., Taheri, E. Uniform trigonometrization method for optimal control problems with control and state constraints. Journal of Spacecraft and Rockets, 2020, 57(5): 995–1007.

    Article  Google Scholar 

  22. Vavrina, M. A., Englander, J. A., Ghosh, A. R. Coupled low-thrust trajectory and systems optimization via multi-objective hybrid optimal control. In: Proceedings of the 25th AAS/AIAA Spaceflight Mechanics Meeting, 2015: AAS 15-397.

  23. Petukhov, V. G., Wook, W. S. Joint optimization of the trajectory and the main parameters of an electric propulsion system. Procedia Engineering, 2017, 185: 312–318.

    Article  Google Scholar 

  24. Taheri, E., Junkins, J. L., Kolmanovsky, I., Girard, A. A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1. Acta Astronautica, 2020, 172: 151–165.

    Article  Google Scholar 

  25. Taheri, E., Junkins, J. L., Kolmanovsky, I., Girard, A. A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 2. Acta Astronautica, 2020, 172: 166–179.

    Article  Google Scholar 

  26. Laipert, F. E., Longuski, J. M. Automated missed-thrust propellant margin analysis for low-thrust trajectories. Journal of Spacecraft and Rockets, 2015, 52(4): 1135–1143.

    Article  Google Scholar 

  27. Kelly, P., Bevilacqua, R. Geostationary debris mitigation using minimum time solar sail trajectories with eclipse constraints. Optimal Control Applications and Methods, 2021, 42(1): 279–304.

    Article  MathSciNet  MATH  Google Scholar 

  28. Taheri, E. Optimization of many-revolution minimum-time low-thrust trajectories using sundman transformation. In: Proceedings of the AIAA SciTech 2021 Forum, 2021: AIAA 2021-1343.

  29. Olympio, J. T. A continuous implementation of a second-variation optimal control method for space trajectory problems. Journal of Optimization Theory and Applications, 2013, 158(3): 687–716.

    Article  MathSciNet  MATH  Google Scholar 

  30. Chilan, C. M., Conway, B. A. A reachable set analysis method for generating near-optimal trajectories of constrained multiphase systems. Journal of Optimization Theory and Applications, 2015, 167(1): 161–194.

    Article  MathSciNet  MATH  Google Scholar 

  31. Olympio, J. T. Optimal control problem for low-thrust multiple asteroid tour missions. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1709–1720.

    Article  Google Scholar 

  32. Jiang, F. H., Baoyin, H. X., Li, J. F. Practical techniques for low-thrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 245–258.

    Article  Google Scholar 

  33. Taheri, E., Kolmanovsky, I., Atkins, E. Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories. Journal of Guidance, Control, and Dynamics, 2016, 39(11): 2500–2511.

    Article  Google Scholar 

  34. Taheri, E., Junkins, J. L. Generic smoothing for optimal Bang-off-Bang spacecraft maneuvers. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2470–2475.

    Article  Google Scholar 

  35. Shen, H. X. No-guess indirect optimization of asteroid mission using electric propulsion. Optimal Control Applications and Methods, 2018, 39(2): 1061–1070.

    Article  MathSciNet  MATH  Google Scholar 

  36. Junkins, J. L., Taheri, E. Exploration of alternative state vector choices for low-thrust trajectory optimization. Journal of Guidance, Control, and Dynamics, 2018, 42(1): 47–64.

    Article  Google Scholar 

  37. Singh, S., Junkins, J., Anderson, B., Taheri, E. Eclipse-conscious transfer to lunar gateway using ephemeris-driven terminal Coast arcs. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 1972–1988.

    Article  Google Scholar 

  38. Roa, J., Kasdin, N. J. Alternative set of nonsingular quaternionic orbital elements. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2737–2751.

    Article  Google Scholar 

  39. Sreesawet, S., Dutta, A. Fast and robust computation of low-thrust orbit-raising trajectories. Journal of Guidance, Control, and Dynamics, 2018, 41(9): 1888–1905.

    Article  Google Scholar 

  40. Herman, A. L., Conway, B. A. Optimal, low-thrust, earth-moon orbit transfer. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 141–147.

    Article  MATH  Google Scholar 

  41. Taheri, E., Abdelkhalik, O. Fast initial trajectory design for low-thrust restricted-three-body problems. Journal of Guidance, Control, and Dynamics, 2015, 38(11): 2146–2160.

    Article  Google Scholar 

  42. Junkins, J. L., Singla, P. How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics. The Journal of the Astronautical Sciences, 2004, 52(1–2): 7–60.

    Article  MathSciNet  Google Scholar 

  43. Walker, M. J. H. A set of modified equinoctial orbit elements. Celestial Mechanics, 1986, 38(4): 391–392.

    Article  MATH  Google Scholar 

  44. Arya, V., Taheri, E., Junkins, J. L. A composite framework for co-optimization of spacecraft trajectory and propulsion system. Acta Astronautica, 2021, 178: 773–782.

    Article  Google Scholar 

  45. Arya, V., Taheri, E., Junkins, J. Electric thruster mode-pruning strategies for trajectory-propulsion co-optimization. Aerospace Science and Technology, 2021, 116: 106828.

    Article  Google Scholar 

  46. Ranieri, C. L., Ocampo, C. A. Indirect optimization of spiral trajectories. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1360–1366.

    Article  Google Scholar 

  47. Lawden, D. F. Optimal Trajectories for Space Navigation. Butterworths, 1963.

  48. Jamison, B. R., Coverstone, V. Analytical study of the primer vector and orbit transfer switching function. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 235–245.

    Article  Google Scholar 

  49. Kechichian, J. A. Trajectory optimization using eccentric longitude formulation. Journal of Spacecraft and Rockets, 1998, 35(3): 317–326.

    Article  Google Scholar 

  50. Kitamura, K., Yamada, K., Shima, T. Minimum energy coplanar orbit transfer of geostationary spacecraft using time-averaged Hamiltonian. Acta Astronautica, 2019, 160: 270–279.

    Article  Google Scholar 

  51. Haissig, C. M., Mease, K. D., Vinh, N. X. Canonical transformations for space trajectory optimization. In: Proceedings of the AIAA/AAS Astrodynamics Conference, 1992: AIAA-92-4509-CP.

  52. Caillau, J. B., Gergaud, J., Noailles, J. 3D geosynchronous transfer of a satellite: Continuation on the thrust. Journal of Optimization Theory and Applications, 2003, 118(3): 541–565.

    Article  MathSciNet  MATH  Google Scholar 

  53. Gelfand, I. M., Fomin, S. V. Calculus of Variations. Courier Corporation, 2000.

  54. Shuster, M. D. The generalized Wahba problem. The Journal of the Astronautical Sciences, 2006, 54(2): 245–259.

    Article  MathSciNet  Google Scholar 

  55. Betts, J. T. Optimal low-thrust orbit transfers with eclipsing. Optimal Control Applications and Methods, 2015, 36(2): 218–240.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Taheri.

Additional information

Ehsan Taheri is an assistant professor at the Department of Aerospace Engineering in Auburn University. His research is focused on developing dependable algorithms for solving optimal control problems associated with complex dynamical systems, including spacecraft equipped with low-thrust electric propulsion systems, entry, decent and landing vehicles, and multi-rotor unmanned aerial vehicles. E-mail: etaheri@auburn.edu.

Vishala Arya is a Ph.D. candidate at the Aerospace Department of Texas A&M University working under the supervision of Dr. John Junkins. Her research interests are direct and indirect-based methods for co-optimization of spacecraft, trajectory, and propulsion parameters of multi-mode solar propulsion systems, autonomous and fault-tolerant guidance of spacecraft for low thrust interplanetary maneuvers, and control principles for non-linear systems for both spacecraft and robotic applications.

John L. Junkins is University Distinguished Professor of Aerospace Engineering and holder of the Royce E. Wisenbaker Chair in Innovation at Texas A&M University. He is the founding director of the Hagler Institute for Advanced Study. Junkins was recently interim president of Texas A&M University for 6 months ending in June 2021. Junkins is a prolific scholar and has advised to completion 55 Ph.D. students. He is the author of over four-hundred papers and seven widely used technical books. His co-authored Analytical Mechanics of Aerospace Systems is now in its 4th edition and won the 2014 Martin Summerfield Best Book Award, given annually by AIAA. He is a member of the National Academy of Engineering, the National Academy of Inventors, the International Academy of Astronautics, and an Honorary Fellow of the American Institute for Aeronautics and Astronautics (AIAA). He recently received the highest honor in his field, the AIAA Robert H. Goddard Astronautics Award (2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, E., Arya, V. & Junkins, J.L. Costate mapping for indirect trajectory optimization. Astrodyn 5, 359–371 (2021). https://doi.org/10.1007/s42064-021-0114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-021-0114-0

Keywords

Navigation