Skip to main content
Log in

Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant

  • Review
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The signature benefits of continuous flow are largely a result of a reactor’s micro-sized features. However, as the technology gains industrial traction in the synthesis of active pharmaceutical ingredients (API), the reactors must be scaled to larger size to meet production demands. Often, the micro-features cannot be preserved, and thus the challenge is in transferring the benefits of micro to the pilot plant and beyond. This review presents solutions to typical problems encountered in plug flow reactors (PFR) related to heat transfer, mixing, handling biphasic reactions, and photochemistry. Lessons are taken from kilogram level syntheses developed in pharmaceutical process chemistry groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Scheme 4
Fig. 6
Scheme 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 6
Fig. 11
Fig. 12
Fig. 13
Scheme 7
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 8
Fig. 19
Fig. 20
Scheme 9
Fig. 21
Scheme 10
Fig. 22

Similar content being viewed by others

References

  1. Razzaq T, Kappe CO (2010) Chem Asian J 5:1274–1289

    CAS  PubMed  Google Scholar 

  2. Newman SG, Jensen KF (2013) Green Chem 15:1456–1472

    CAS  Google Scholar 

  3. Pastre JC, Browne DL, Ley SV (2013) Chem Soc Rev 42:8849–8869

    CAS  PubMed  Google Scholar 

  4. Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Chem Soc Rev 45:4892–4928

    CAS  PubMed  Google Scholar 

  5. Britton J, Raston CL (2017) Chem Soc Rev 46:1250–1271

    CAS  PubMed  Google Scholar 

  6. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) Chem Rev 117:11796–11893

    CAS  PubMed  Google Scholar 

  7. Akwi FM, Watts P (2018) Chem Commun 54:13894–13928

    CAS  Google Scholar 

  8. Riley DL, Strydom I, Chikwamba R, Panayides JL (2019) React Chem Eng 4:457–489

    CAS  Google Scholar 

  9. Kockmann N, Gottsponer M, Zimmermann B, Roberge DM (2008) Chem Eur J 14:7470–7477

    CAS  PubMed  Google Scholar 

  10. Malet-Sanz L, Susanne FJ (2012) Med Chem 55:4062–4098

    CAS  Google Scholar 

  11. Poechlauer P, Manley J, Broxterman R, Gregertsen B, Ridemark M (2012) Org Process Res Dev 16:1586–1590

    CAS  Google Scholar 

  12. Baraldi PT, Hessel V (2012) Green Process Synth 1:149–167

    CAS  Google Scholar 

  13. Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013) Org Process Res Dev 17:1472–1478

    CAS  Google Scholar 

  14. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, Moore CMV, Yu LX, Woodcock JJ (2015) Pharm Innov 10:191–199

    Google Scholar 

  15. Baumann M, Baxendale IR (2015) Beilstein J Org Chem 11:1194–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baxendale R, Braatz RD, Hodnett BK, Jensen KF, Johnson MD, Sharratt P, Sherlock J-P, Florence AJJ (2015) Pharm Sci 104:781–791

    CAS  Google Scholar 

  17. Porta R, Benaglia M, Puglisi A (2016) Org Process Res Dev 20:2–25

    CAS  Google Scholar 

  18. May SAJ (2017) Flow Chem 7:137–145

    CAS  Google Scholar 

  19. Cole KP, Johnson MD (2018) Expert Rev Clin Pharmacol 11:5–13

    CAS  PubMed  Google Scholar 

  20. de Souza ROMA (2018) Heterocycl Chem 56:375–390

    Google Scholar 

  21. Hughes DL (2018) Org Process Res Dev 22:13–20

    CAS  Google Scholar 

  22. McWilliams JC, Allian AD, Opalka SM, May SA, Journet M, Braden TM (2018) Org Process Res Dev 22:1143–1166

    CAS  Google Scholar 

  23. Bogdan AR, Dombrowski AWJ (2019) Med Chem 62:6422–6468

    CAS  Google Scholar 

  24. Thomson NM, Singer R, Seibert KD, Luciani CV, Srivastava S, Kiesman WF, Irdam EA, Lepore JV, Schenck L (2015) Org Process Res Dev 19:935–948

    CAS  Google Scholar 

  25. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005) Chem Eng Technol 28:318–323

    CAS  Google Scholar 

  26. Hessel V (2009) Chem Eng Technol 32:1655–1681

    CAS  Google Scholar 

  27. Illg T, Löb P, Hessel V (2010) Bioorg Med Chem 18:2707–3719

    Google Scholar 

  28. Wegner J, Ceylan S, Kirschning A (2011) Chem Commun 47:4583–4592

    CAS  Google Scholar 

  29. Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54:6688–6728

    CAS  Google Scholar 

  30. Rossetti I, Compagnoni M (2016) Chem Eng J 296:56–70

    CAS  Google Scholar 

  31. Wheeler RC, Benali O, Deal M, Farrant E, MacDonald SJF, Warrington BH (2007) Org Process Res Dev 11:704–710

    CAS  Google Scholar 

  32. Amann F, Frank M, Rhodes R, Robinson A, Kesselgruber M, Abele S (2016) Org Process Res Dev 20:446–451

    CAS  Google Scholar 

  33. Westermann T, Mleczko L (2016) Org Process Res Dev 20:487–494

    CAS  Google Scholar 

  34. Lonza. Equipment and reaction types. https://www.lonza.com/custom-manufacturing/small-molecule-technologies/ microreaction-technology/equipment-and-reaction-types.aspx. Accessed 13 Oct 2019

  35. Yoshida J-I, Nagaki A, Yamada T (2008) Chem Eur J 14:7450–7459

    CAS  PubMed  Google Scholar 

  36. Yoshida J-I, Takahashi Y, Nagaki A (2013) Chem Commun 49:9896–9904

    CAS  Google Scholar 

  37. Wakami H, Yoshida J-I (2005) Org Process Res Dev 9:787–791

    CAS  Google Scholar 

  38. Potdar A, Thomassen LCJ, Kuhn S (2019) Chem Ing Tech 91:592–601

    CAS  Google Scholar 

  39. Haber J, Kashid MN, Renken A, Kiwi-Minsker L (2012) Ind Eng Chem Res 51:1474–1489

    CAS  Google Scholar 

  40. Roberge DM, Bieler N, Mathier M, Eyholzer M, Zimmermann B, Barthe P, Guermeur C, Lobet O, Moreno M, Woehl P (2008) Chem Eng Technol 31:1155–1161

    CAS  Google Scholar 

  41. Barthe P, Guermeur C, Lobet O, Moreno M, Woehl P, Roberge DM, Bieler N, Zimmermann B (2008) Chem Eng Technol 31:1146–1154

    CAS  Google Scholar 

  42. Schwalbe T, Kursave A, Sommer J (2005) Chem Eng Technol 28:408–419

    CAS  Google Scholar 

  43. Ducry L, Roberge DM (2008) Org Process Res Dev 12:163–167

    CAS  Google Scholar 

  44. LaPorte TL, Spangler L, Hamedi M, Lobben P, Chan SH, Muslehiddinoglu J, Wang SSY (2014) Org Process Res Dev 18:1492–1502

    CAS  Google Scholar 

  45. Broom T, Hughes M, Szczepankiewicz BG, Ace K, Hagger B, Lacking G, Chima R, Marchbank G, Alford G, Evans P, Cunningham C, Roberts JC, Perni RB, Berry M, Rutter A, Watson SA (2014) Org Process Res Dev 18:1354–1359

    CAS  Google Scholar 

  46. Ogata Y, Takashima T, Dodo O, Haramaki H (2003) Nippon Shokubai Co. Shell-and-tube Reactor. US 6,582,667 B1 United States

  47. Perry RH, Green DW (1984) Perry’s chemical engineers’ handbook.6th edn. McGraw-Hill, New York

    Google Scholar 

  48. Laue S, Haverkamp V, Mleczko L (2016) Org Process Res Dev 20:480–486

    CAS  Google Scholar 

  49. Jahn P, Ochmann K (2003) Tube reactor based on a laminate. US 2003/0103879 A1 United States

  50. Ducry L, Roberge DM (2005) Angew Chem Int Ed 44:7972–7975

    CAS  Google Scholar 

  51. InnoSyn. Flow chemistry. https://www.innosyn.com/flow-chemistry/. Accessed 13 Oct 2019

  52. Borukhova L, Reintjens R, de Vries A (2019) Chem Knowl 2:50–51

    Google Scholar 

  53. Yoshida J-I, Nagaki A, Iwasaki T, Suga S (2005) Chem. Eng. Technol. 28:259–266

    CAS  Google Scholar 

  54. Paul EL, Atiemo-Obeng VA, Kresta SM (2003) Handbook of industrial mixing: science and practice. Wiley-Blackwell, Hoboken

    Google Scholar 

  55. Xu B, Li Y, Xu X, Xu X (2017) ChemBioEng Rev 4:120–140

    CAS  Google Scholar 

  56. Visscher F, van der Schaaf J, Nijhuis TA, Schouten JC (2013) Chem Eng Res Des 91:1923–1940

    CAS  Google Scholar 

  57. Schwolow S, Hollmann J, Schenkel B, Röder T (2012) Org Process Res Dev 16:1513–1522

    CAS  Google Scholar 

  58. Bourne JR (2003) Org Process Res Dev 7:471–508

    CAS  Google Scholar 

  59. Lévesque F, Rogus NJ, Spencer G, Grigorov P, McMullen JP, Thaisrivongs DA, Davies IW, Naber JR (2018) Org Process Res Dev 22:1015–1021

    Google Scholar 

  60. Hafner A, Filipponi P, Piccioni L, Meisenbach M, Schenkel B, Venturoni F, Sedelmeier J (2016) Org Process Res Dev 20:1833–1837

    CAS  Google Scholar 

  61. Hafner A, Meisenbach M, Sedelmeier J (2016) Org Lett 18:3630–3633

    CAS  PubMed  Google Scholar 

  62. Thaisrivongs DA, Naber JR, McMullen JP (2016) Org Process Res Dev 20:1997–2004

    CAS  Google Scholar 

  63. Thaisrivongs DA, Naber JR, Rogus NJ, Spencer G (2018) Org Process Res Dev 22:403–408

    CAS  Google Scholar 

  64. McMullen JP, Marton CH, Sherry BD, Spencer G, Kukura J, Eyke NS (2018) Org Process Res Dev 22:1208–1213

    CAS  Google Scholar 

  65. Gauthier Jr DR, Sherry BD, Cao Y, Journet M, Humphrey G, Itoh T, Mangion I, Tschaen DM (2015) Org Lett 17:1353–1356

    CAS  PubMed  Google Scholar 

  66. Dolman SJ, Nyrop JL, Kuethe JTJ (2011) Org Chem 76:993–996

    CAS  Google Scholar 

  67. Newby JA, Blaylock DW, Witt PM, Turner RM, Heider PL, Harji BH, Browne DL, Ley SV (2014) Org Process Res Dev 18:1221–1228

    CAS  Google Scholar 

  68. M-Technique. https://www.m-technique.co.jp/e/members /ulrea/kouzou.html. Accessed 13 Oct 2019

  69. Brechtelsbauer C, Lewis N, Oxley P, Ricard F (2001) Org Process Res Dev 5:65–68

    CAS  Google Scholar 

  70. Hampton PD, Whealon MD, Roberts LM, Yaeger AA, Boydson R (2008) Org Process Res Dev 12:946–949

    CAS  Google Scholar 

  71. Gonzalez MA, Ciszewski JT (2009) Org Process Res Dev 13:64–66

    CAS  Google Scholar 

  72. Corning. Advanced flow reactors. https://www.cornin.com /media/worldwide/Innovation/documents/G1_WEB.pdf. Accessed 13 Oct 2019

  73. Johnson MD, May SA, Calvin JR, Remacle J, Stout JR, Diseroad WD, Zaborenko N, Haeberle BD, Sun WM, Miller MT, Brennan J (2012) Org Process Res Dev 16:1017–1038

    CAS  Google Scholar 

  74. Johnson MD, May SA, Haeberle B, Lambertus GR, Pulley SR, Stout JR (2016) Org Process Res Dev 20:1305–1320

    CAS  Google Scholar 

  75. Hurley DD, Corrigan AP, Gowran O, Kerrigan NG, Kissane MG, Lynch RR, Sheehan P, Spencer RD (2016) Org Process Res Dev 20:1870–1898

    Google Scholar 

  76. Ouchi T, Battilocchio C, Hawkins JM, Ley SV (2014) Org Process Res Dev 18:1560–1566

    CAS  Google Scholar 

  77. Buisson B, Donegan S, Wray D, Parracho A, Gamble J, Caze P, Jorda J, Guermeur C (2009) Chim Oggi 27:12–16

    CAS  Google Scholar 

  78. Amara Z, Poliakoff M, Duque R, Geier D, Franciò G, Gordon CM, Meadows RE, Woodward R, Leitner W (2016) Org Process Res Dev 20:1321–1327

    CAS  Google Scholar 

  79. LaPorte TL, Hamedi M, DePue JS, Shen L, Watson D, Hsieh D (2008) Org Process Res Dev 12:956–966

    CAS  Google Scholar 

  80. Ye X, Johnson MD, Diao T, Yates MH, Stahl SS (2010) Green Chem 12:1180–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brewer AC, Hoffman PC, Martinelli JR, Kobierski ME, Mullane N, Robbins D (2019) Org Process Res Dev 23:1484–1498

    Google Scholar 

  82. Wu G, Cao E, Ellis P, Constantinou A, Kuhn S, Gavriilidis A (2019) Chem Eng J 377:120086

    Google Scholar 

  83. Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2012) Ind Eng Chem Res 51:16251–16262

    CAS  Google Scholar 

  84. Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2013) Ind Eng Chem Res 52:8996–9010

    CAS  Google Scholar 

  85. May SA, Johnson MD, Buser JY, Campbell AN, Frank SA, Haeberle BD, Hoffman PC, Lambertus GR, McFarland AD, Moher ED, White TD, Hurley DD, Corrigan AP, Gowran O, Kerrigan NG, Kissane MG, Lynch RR, Sheehan P, Spencer RD, Pulley SR, Stout JR (2016) Org Process Res Dev 20:1870–1898

    CAS  Google Scholar 

  86. Hoffmann N (2008) Chem Rev 108:1052–1103

    CAS  PubMed  Google Scholar 

  87. Kärkäs MD, Porco Jr JA, Stephenson CRJ (2016) Chem Rev 116:9683–9747

    PubMed  PubMed Central  Google Scholar 

  88. Poplata S, Tröster A, Zou Y-Q, Bach T (2016) Chem Rev 116:9748–9815

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Remy R, Bochet CG (2016) Chem Rev 116:9816–9849

    CAS  PubMed  Google Scholar 

  90. Ravelli D, Protti S, Fagnoni M (2016) Chem Rev 116:9850–9913

    CAS  PubMed  Google Scholar 

  91. Ghogare AA, Greer A (2016) Chem Rev 116:9994–10034

    CAS  PubMed  Google Scholar 

  92. Skubi KL, Blum TR, Yoon TP (2016) Chem Rev 116:10035–10074

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Romero NA, Nicewicz DA (2016) Chem Rev 116:10075–10166

    CAS  PubMed  Google Scholar 

  94. Albini A (2016) Photochemistry: past, present and future. Springer, Berlin

    Google Scholar 

  95. Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KIJ (2005) Org Chem 70:7558–7564

    CAS  Google Scholar 

  96. Politano F, Oksdath-Mansilla G (2018) Org Process Res Dev 22:1045–1062

    CAS  Google Scholar 

  97. Knowles JP, Elliot LD, Booker-Milburn KI (2012) Beilstein J Org Chem 8:2025–2052

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Su Y, Straathof N, Hessel V, Noël T (2014) Chem Eur J 20:10562–10589

    CAS  PubMed  Google Scholar 

  99. Cambié D, Bottecchia C, Straathof N, Hessel V, Noël T (2016) Chem Rev 17:10276–10341

    Google Scholar 

  100. Cambié D, Noël T (2018) Top Curr Chem 376-402:45

    Google Scholar 

  101. Su Y, Kuijpers K, Hessela V, Noël T (2016) React Chem Eng 1:73–81

    CAS  Google Scholar 

  102. Yayla HG, Peng F, Mangion IK, McLaughlin M, Campeau LC, Davies IW, DiRocco DA, Knowles RR (2016) Chem Sci 7:2066–2073

    CAS  PubMed  Google Scholar 

  103. Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CRJ (2016) Chem. 1:456–472

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Blanco-Ania D, Gawade SA, Zwinkels LJL, Maartense L, Bolster MG, Benningshof JCJ, Rutjes FPJT (2016) Org Process Res Dev 20:409–413

    CAS  Google Scholar 

  105. Elliott LD, Berry M, Harji B, Klauber D, Leonard J, Booker-Milburn KI (2016) Org Process Res Dev 20:1806–1811

    CAS  Google Scholar 

  106. Harper KC, Moschetta EG, Bordawekar SV, Wittenberger SJ (2019) ACS Cent Sci 5:109–115

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Clark CA, Lee DS, Pickering SJ, Poliakoff M, George MW (2016) Org Process Res Dev 20:1792–1798

    CAS  Google Scholar 

  108. Clark CA, Lee DS, Pickering SJ, Poliakoff M, George MW (2018) Org Process Res Dev 22:595–599

    CAS  Google Scholar 

  109. Roibu A, Fransen S, Leblebici ME, Meir G, Van Gerven T, Kuhn S (2018) Sci Rep 8:1–10

    CAS  Google Scholar 

  110. Elliott LD, Knowles JP, Stacey CS, Klauber DJ, Booker-Milburn KI (2018) React Chem Eng 3:86–93

    CAS  Google Scholar 

  111. Ji Y, DiRocco DA, Hong CM, Wismer MK, Reibarkh M (2018) Org Lett 20:2156–2159

    CAS  PubMed  Google Scholar 

  112. Lévesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706–1709

    Google Scholar 

  113. Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A (2014) Org Process Res Dev 18:417–422

    CAS  Google Scholar 

  114. Halperin SD, Kwon D, Holmes M, Regalado EL, Campeau LC, DiRocco DA, Britton R (2015) Org Lett 17:5200–5203

    CAS  PubMed  Google Scholar 

  115. Nodwell MB, Bagai A, Halperin SD, Martin RE, Knust H, Britton R (2015) Chem Commun 51:11783–11786

    CAS  Google Scholar 

  116. Noël T, Gelonch ME, Huvaere K (2017) Photochemical processes in continuous-flow reactors. Chapter 9: industrial photochemistry: from laboratory scale to industrial scale. World Scientific

  117. Noël T, Cao Y, Laudadio G (2019) Acc Chem Res 52:2858–2869

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Bill and Melinda Gates Foundation and DARPA (Army W31P4Q-18-1-0001) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Snead.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berton, M., de Souza, J.M., Abdiaj, I. et al. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem 10, 73–92 (2020). https://doi.org/10.1007/s41981-019-00060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00060-x

Keywords

Navigation