Skip to main content

Advertisement

Log in

The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The development of clean and sustainable energy depends largely on electrocatalysis-driven technologies. Because of this, tremendous efforts have been devoted to the search for efficient electrocatalysts to reduce the overpotential and increase the selectivity of electrochemical reactions. Of the various approaches, electrochemical tuning is seen as a promising technique to controllably tune the properties of catalytic materials under mild conditions. Based on this, this review will present representative electrochemical tuning methodologies involving insertion and conversion reactions in batteries as well as in situ electrode modulation during electrocatalysis processes. This review will first provide an introduction of electrochemical tuning strategies from the perspective of reactions and devices. Subsequently, this review will present comprehensive discussions on recent advancements in the modulation of various electrocatalyst properties, including electronic structure, crystalline phase, lattice strain and dimensional size, all of which significantly impact corresponding intrinsic activity and active site exposure. This review will also highlight the merits, challenges and issues of electrochemical tuning and propose promising directions in the exploration of corresponding methods in the design and enhancement of electrocatalysts for future energy applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  2. Greeley, J., Markovic, N.M.: The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5, 9246–9256 (2012). https://doi.org/10.1039/c2ee21754f

    Article  CAS  Google Scholar 

  3. Xu, Z.J., Wang, X.: Electrocatalysis: a core technique for a sustainable future. Chem. Eur. J. 26, 3897 (2020). https://doi.org/10.1002/chem.202000909

    Article  CAS  Google Scholar 

  4. Zhao, Y., Adair, K., Sun, X.L.: Toward clean energy devices: from a fundamental understanding to practical applications. Matter 1, 1119–1126 (2019). https://doi.org/10.1016/j.matt.2019.10.016

    Article  Google Scholar 

  5. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  6. Wei, C., Rao, R.R., Peng, J.Y., et al.: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019). https://doi.org/10.1002/adma.201806296

    Article  CAS  Google Scholar 

  7. Khan, M.A., Zhao, H., Zou, W., et al.: Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1, 483–530 (2018). https://doi.org/10.1007/s41918-018-0014-z

    Article  CAS  Google Scholar 

  8. Song, J.J., Wei, C., Huang, Z.F., et al.: A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Z.Y., Ma, T., Tao, H.C., et al.: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009

    Article  CAS  Google Scholar 

  10. Gu, J., Hsu, C.S., Bai, L.C., et al.: Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515

    Article  CAS  PubMed  Google Scholar 

  11. Ma, W.C., Xie, S.J., Liu, T.T., et al.: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0

    Article  CAS  Google Scholar 

  12. Feng, D.M., Sun, Y., Liu, Z.Q., et al.: Designing nanostructured metal-based CO2 reduction electrocatalysts. J. Nanosci. Nanotechnol. 19, 3079–3096 (2019). https://doi.org/10.1166/jnn.2019.16648

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Yang, Y., Jia, S.F., et al.: Synergistic Mn–Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019). https://doi.org/10.1038/s41467-019-09503-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, N.C., Shao, Y.Y., Liu, J., et al.: Electrocatalysts by atomic layer deposition for fuel cell applications. Nano Energy 29, 220–242 (2016). https://doi.org/10.1016/j.nanoen.2016.01.016

    Article  CAS  Google Scholar 

  15. He, Y.H., Tan, Q., Lu, L.L., et al.: Metal–nitrogen–carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2, 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9

    Article  CAS  Google Scholar 

  16. Cheng, F.Y., Chen, J.: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a

    Article  CAS  PubMed  Google Scholar 

  17. Geng, D.S., Ding, N., Hor, T.S.A., et al.: From lithium–oxygen to lithium-air batteries: challenges and opportunities. Adv. Energy Mater. 6, 1502164 (2016). https://doi.org/10.1002/aenm.201502164

    Article  CAS  Google Scholar 

  18. Li, M., Bi, X., Wang, R., et al.: Relating catalysis between fuel cell and metal–air batteries. Matter 2, 32–49 (2020). https://doi.org/10.1016/j.matt.2019.10.007

    Article  Google Scholar 

  19. Han, X., Li, X., White, J., et al.: Metal–air batteries: from static to flow system. Adv. Energy Mater. 8, 1801396 (2018). https://doi.org/10.1002/aenm.201801396

    Article  CAS  Google Scholar 

  20. Hong, W.T., Risch, M., Stoerzinger, K.A., et al.: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j

    Article  CAS  Google Scholar 

  21. Wang, H.T., Yuan, H.T., Sae Hong, S., et al.: Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015). https://doi.org/10.1039/c4cs00287c

    Article  CAS  PubMed  Google Scholar 

  22. Sun, H.M., Yan, Z.H., Liu, F.M., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020). https://doi.org/10.1002/adma.201806326

    Article  CAS  Google Scholar 

  23. Ramakrishna Matte, H.S.S., Gomathi, A., Manna, A.K., et al.: MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010). https://doi.org/10.1002/anie.201000009

    Article  CAS  Google Scholar 

  24. Lee, S., Nam, G., Sun, J., et al.: Enhanced intrinsic catalytic activity of λ-MnO2by electrochemical tuning and oxygen vacancy generation. Angew. Chem. Int. Ed. 55, 8599–8604 (2016). https://doi.org/10.1002/anie.201602851

    Article  CAS  Google Scholar 

  25. Maiyalagan, T., Jarvis, K.A., Therese, S., et al.: Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949

    Article  CAS  PubMed  Google Scholar 

  26. Hu, Y.X., Zhang, T.R., Cheng, F.Y., et al.: Recycling application of Li–MnO2 batteries as rechargeable lithium-air batteries. Angew. Chem. Int. Edit. 54, 4338–4343 (2015). https://doi.org/10.1002/anie.201411626

    Article  CAS  Google Scholar 

  27. Zeng, Z.Y., Yin, Z.Y., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011). https://doi.org/10.1002/anie.201106004

    Article  CAS  Google Scholar 

  28. Lu, Z.Y., Jiang, K., Chen, G.X., et al.: Lithium electrochemical tuning for electrocatalysis. Adv. Mater. 30, 1800978 (2018). https://doi.org/10.1002/adma.201800978

    Article  CAS  Google Scholar 

  29. Zhao, C.X., Li, B.Q., Zhao, M., et al.: Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy Environ. Sci. 13, 1711–1716 (2020). https://doi.org/10.1039/c9ee03573g

    Article  CAS  Google Scholar 

  30. Meng, J., Liu, F.M., Yan, Z.H., et al.: Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries. Inorg. Chem. Front. 5, 2167–2173 (2018). https://doi.org/10.1039/c8qi00404h

    Article  CAS  Google Scholar 

  31. Chen, W., Wang, H., Li, Y., et al.: In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 1, 244–251 (2015). https://doi.org/10.1021/acscentsci.5b00227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Luo, Z., Yu, P., et al.: Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 1, 460–468 (2018). https://doi.org/10.1038/s41929-018-0072-y

    Article  CAS  Google Scholar 

  33. Hu, Y.S., Guo, Y.G., Sigle, W., et al.: Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 5, 713–717 (2006). https://doi.org/10.1038/nmat1709

    Article  CAS  PubMed  Google Scholar 

  34. Guo, Y., Dai, Z., Lu, J., et al.: Lithiation-induced non-noble metal nanoparticles for Li–O2 batteries. ACS Appl. Mater. Interfaces. 11, 811–818 (2019). https://doi.org/10.1021/acsami.8b17417

    Article  CAS  PubMed  Google Scholar 

  35. Lu, Z., Wang, H., Kong, D., et al.: Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014). https://doi.org/10.1038/ncomms5345

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, D.W., Chen, C.H., Zhang, J., et al.: Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers. Chem. Mater. 17, 5242–5245 (2005). https://doi.org/10.1021/cm051584c

    Article  CAS  Google Scholar 

  37. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045

    Article  CAS  PubMed  Google Scholar 

  38. Grugeon, S., Laruelle, S., Herrera-Urbina, R., et al.: Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 148, A285 (2001). https://doi.org/10.1149/1.1353566

    Article  CAS  Google Scholar 

  39. Li, J., Hwang, S., Guo, F., et al.: Phase evolution of conversion-type electrode for lithium ion batteries. Nat. Commun. 10, 2224 (2019). https://doi.org/10.1038/s41467-019-09931-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, D.W., Chen, C.H., Zhang, J., et al.: Fabrication of nanosized metallic copper by electrochemical milling process. J. Mater. Sci. 43, 1492–1496 (2008). https://doi.org/10.1007/s10853-007-2274-6

    Article  CAS  Google Scholar 

  41. Whittingham, M.S.: Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–99 (1978). https://doi.org/10.1016/0079-6786(78)90003-1

    Article  CAS  Google Scholar 

  42. Samaras, I., Saikh, S.I., Julien, C., et al.: Lithium insertion in layered materials as battery cathodes. Mater. Sci. Eng. B 3, 209–214 (1989). https://doi.org/10.1016/0921-5107(89)90203-1

    Article  Google Scholar 

  43. Winter, M., Besenhard, J.O., Spahr, M.E., et al.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10725:AID-ADMA725%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  44. Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). https://doi.org/10.1126/science.192.4244.1126

    Article  CAS  PubMed  Google Scholar 

  45. Markovsky, B., Levi, M.D., Aurbach, D.: The basic electroanalytical behavior of practical graphite–lithium intercalation electrodes. Electrochim. Acta 43, 2287–2304 (1998). https://doi.org/10.1016/s0013-4686(97)10172-4

    Article  CAS  Google Scholar 

  46. Mizushima, K., Jones, P.C., Wiseman, P.J., et al.: LixCoO2 (0 < x \( \leqslant \) 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  47. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  48. Liang, W.Y.: Electronic properties of intercalation compounds. Mater. Sci. Eng. B 3, 139–143 (1989). https://doi.org/10.1016/0921-5107(89)90193-1

    Article  Google Scholar 

  49. Chrissafis, K., Zamani, M., Kambas, K., et al.: Structural studies of MoS2 intercalated by lithium. Mater. Sci. Eng. B 3, 145–151 (1989). https://doi.org/10.1016/0921-5107(89)90194-3

    Article  Google Scholar 

  50. Py, M.A., Haering, R.R.: Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983). https://doi.org/10.1139/p83-013

    Article  CAS  Google Scholar 

  51. Joensen, P., Frindt, R.F., Morrison, S.R.: Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986). https://doi.org/10.1016/0025-5408(86)90011-5

    Article  CAS  Google Scholar 

  52. Tsai, H.L., Heising, J., Schindler, J.L., et al.: Exfoliated-restacked phase of WS2. Chem. Mater. 9, 879–882 (1997). https://doi.org/10.1021/cm960579t

    Article  CAS  Google Scholar 

  53. Stamenkovic, V., Mun, B.S., Mayrhofer, K.J., et al.: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006). https://doi.org/10.1002/anie.200504386

    Article  CAS  Google Scholar 

  54. Wang, Y., Qiao, M., Li, Y., et al.: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14, e1800136 (2018). https://doi.org/10.1002/smll.201800136

    Article  CAS  PubMed  Google Scholar 

  55. Sabatier, P.: Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 44, 1984–2001 (1911). https://doi.org/10.1002/cber.19110440303

    Article  CAS  Google Scholar 

  56. Greeley, J., Jaramillo, T.F., Bonde, J., et al.: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1038/nmat1752

    Article  CAS  PubMed  Google Scholar 

  57. Brodsky, C.N., Hadt, R.G., Hayes, D., et al.: In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: modeling the high-valent active site in oxygen-evolving catalysts. PNAS 114, 3855–3860 (2017). https://doi.org/10.1073/pnas.1701816114

    Article  CAS  PubMed  Google Scholar 

  58. Hadt, R.G., Hayes, D., Brodsky, C.N., et al.: X-ray spectroscopic characterization of Co(IV) and metal-metal interactions in Co4O4: electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction. J. Am. Chem. Soc. 138, 11017–11030 (2016). https://doi.org/10.1021/jacs.6b04663

    Article  CAS  PubMed  Google Scholar 

  59. Wang, J.H., Li, L.P., Tian, H.Q., et al.: Ultrathin LiCoO2 nanosheets: an efficient water-oxidation catalyst. ACS Appl. Mater. Interfaces 9, 7100–7107 (2017). https://doi.org/10.1021/acsami.6b14896

    Article  CAS  PubMed  Google Scholar 

  60. Chen, R.R., Sun, Y., Ong, S.J.H., et al.: Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation. Adv. Mater. 32, e1907976 (2020). https://doi.org/10.1002/adma.201907976

    Article  CAS  PubMed  Google Scholar 

  61. Sun, S.N., Sun, Y.M., Zhou, Y., et al.: Switch of the rate-determining step of water oxidation by spin-selected electron transfer in spinel oxides. Chem. Mater. 31, 8106–8111 (2019). https://doi.org/10.1021/acs.chemmater.9b02737

    Article  CAS  Google Scholar 

  62. Suntivich, J., May, K.J., Gasteiger, H.A., et al.: a perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858

    Article  CAS  PubMed  Google Scholar 

  63. Sun, Y., Liao, H., Wang, J., et al.: Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nat. Catal. 3, 554–563 (2020). https://doi.org/10.1038/s41929-020-0465-6

    Article  CAS  Google Scholar 

  64. Sun, S.N., Sun, Y.M., Zhou, Y., et al.: Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew. Chem. Int. Ed. 58, 6042–6047 (2019). https://doi.org/10.1002/anie.201902114

    Article  CAS  Google Scholar 

  65. Duan, Y., Sun, S.N., Xi, S.B., et al.: Tailoring the Co3 d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 29, 10534–10541 (2017). https://doi.org/10.1021/acs.chemmater.7b04534

    Article  CAS  Google Scholar 

  66. Liu, Y.W., Xiao, C., Huang, P.C., et al.: Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 4, 1263–1283 (2018). https://doi.org/10.1016/j.chempr.2018.02.006

    Article  CAS  Google Scholar 

  67. Zhang, K., Han, X.P., Hu, Z., et al.: Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015). https://doi.org/10.1039/c4cs00218k

    Article  CAS  PubMed  Google Scholar 

  68. Khan, M., Suljoti, E., Singh, A., et al.: Electronic structural insights into efficient MnOx catalysts. J. Mater. Chem. A 2, 18199–18203 (2014). https://doi.org/10.1039/c4ta04185b

    Article  CAS  Google Scholar 

  69. Smith, P.F., Deibert, B.J., Kaushik, S., et al.: Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: an investigation of manganite (γ-MnOOH). ACS Catal. 6, 2089–2099 (2016). https://doi.org/10.1021/acscatal.6b00099

    Article  CAS  Google Scholar 

  70. Cheng, F.Y., Zhang, T.R., Zhang, Y., et al.: Enhancing electrocatalytic oxygen reduction on MnO(2) with vacancies. Angew. Chem. Int. Ed. Engl. 52, 2474–2477 (2013). https://doi.org/10.1002/anie.201208582

    Article  CAS  PubMed  Google Scholar 

  71. Han, X.P., Zhang, T.R., Du, J., et al.: Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem. Sci. 4, 368–376 (2013). https://doi.org/10.1039/c2sc21475j

    Article  CAS  Google Scholar 

  72. Du, J., Zhang, T.R., Cheng, F.Y., et al.: Nonstoichiometric perovskite CaMnO3–δ for oxygen electrocatalysis with high activity. Inorg. Chem. 53, 9106–9114 (2014). https://doi.org/10.1021/ic501631h

    Article  CAS  PubMed  Google Scholar 

  73. Lei, K.X., Han, X.P., Hu, Y.X., et al.: Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chem. Commun. 51, 11599–11602 (2015). https://doi.org/10.1039/c5cc03155a

    Article  CAS  Google Scholar 

  74. Park, J., Kim, H., Jin, K., et al.: A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency. J. Am. Chem. Soc. 136, 4201–4211 (2014). https://doi.org/10.1021/ja410223j

    Article  CAS  PubMed  Google Scholar 

  75. Robinson, D.M., Go, Y.B., Greenblatt, M., et al.: Water oxidation by lambda-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J. Am. Chem. Soc. 132, 11467–11469 (2010). https://doi.org/10.1021/ja1055615

    Article  CAS  PubMed  Google Scholar 

  76. Colligan, N., Augustyn, V., Manthiram, A.: Evidence of localized lithium removal in layered and lithiated spinel Li1–xCoO2(0 \( \leqslant \)x \( \leqslant \) 0.9) under oxygen evolution reaction conditions. J. Phys. Chem. C (2015). https://doi.org/10.1021/jp511176j

    Article  Google Scholar 

  77. Lu, Z., Chen, G., Li, Y., et al.: Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction. J. Am. Chem. Soc. 139, 6270–6276 (2017). https://doi.org/10.1021/jacs.7b02622

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, S., Gu, S., Wang, Y., et al.: Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 9, 7389–7397 (2019). https://doi.org/10.1021/acscatal.9b00928

    Article  CAS  Google Scholar 

  79. Grimaud, A., Diaz-Morales, O., Han, B., et al.: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695

    Article  CAS  PubMed  Google Scholar 

  80. Gao, R., Zhou, D., Ning, D., et al.: Probing the self-boosting catalysis of LiCoO2 in Li–O2 battery with multiple in situ/operando techniques. Adv. Funct. Mater. 30, 2002223 (2020). https://doi.org/10.1002/adfm.202002223

    Article  CAS  Google Scholar 

  81. Chen, R., Yang, C.J., Cai, W.Z., et al.: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2, 1070–1075 (2017). https://doi.org/10.1021/acsenergylett.7b00219

    Article  CAS  Google Scholar 

  82. Li, L., Zhang, G.W., Wang, B., et al.: Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 8, 2090–2098 (2020). https://doi.org/10.1039/c9ta12300h

    Article  CAS  Google Scholar 

  83. Li, L., Wang, B., Zhang, G.W., et al.: Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 10, 2001600 (2020). https://doi.org/10.1002/aenm.202001600

    Article  CAS  Google Scholar 

  84. Wang, H.F., Tang, C., Li, B.Q., et al.: A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 5, 521–534 (2018). https://doi.org/10.1039/c7qi00780a

    Article  CAS  Google Scholar 

  85. Li, Y., Kuttiyiel, K.A., Wu, L.J., et al.: Enhancing electrocatalytic performance of bifunctional cobalt–manganese–oxynitride nanocatalysts on graphene. Chemsuschem 10, 68–73 (2017). https://doi.org/10.1002/cssc.201601188

    Article  CAS  PubMed  Google Scholar 

  86. Xiao, Z.H., Wang, Y., Huang, Y.C., et al.: Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10, 2563–2569 (2017). https://doi.org/10.1039/c7ee01917c

    Article  CAS  Google Scholar 

  87. Li, B.Q., Zhang, S.Y., Tang, C., et al.: Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation. Small 13, 1700610 (2017). https://doi.org/10.1002/smll.201700610

    Article  CAS  Google Scholar 

  88. Rajeshkhanna, G., Kandula, S., Shrestha, K.R., et al.: A new class of Zn1−xFex-oxyselenide and Zn1−xFex-LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting. Small 14, 1803638 (2018). https://doi.org/10.1002/smll.201803638

    Article  CAS  Google Scholar 

  89. Zhao, Q., Yan, Z., Chen, C., et al.: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017). https://doi.org/10.1021/acs.chemrev.7b00051

    Article  CAS  PubMed  Google Scholar 

  90. Wu, T., Sun, S., Song, J., et al.: Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4

    Article  CAS  Google Scholar 

  91. Cheng, F., Shen, J., Peng, B., et al.: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 79–84 (2011). https://doi.org/10.1038/nchem.931

    Article  CAS  PubMed  Google Scholar 

  92. Li, C., Han, X., Cheng, F., et al.: Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 6, 7345 (2015). https://doi.org/10.1038/ncomms8345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao, Y.L., Yang, H.X., Ai, X.P., et al.: The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem. 557, 127–134 (2003). https://doi.org/10.1016/S0022-0728(03)00355-3

    Article  CAS  Google Scholar 

  94. Cheng, F.Y., Su, Y., Liang, J., et al.: MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 22, 898–905 (2010). https://doi.org/10.1021/cm901698s

    Article  CAS  Google Scholar 

  95. Wan, C., Regmi, Y.N., Leonard, B.M.: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 126, 6525–6528 (2014). https://doi.org/10.1002/ange.201402998

    Article  Google Scholar 

  96. Cheng, F., Chen, J., Gou, X., et al.: High-power alkaline Zn–MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17, 2753–2756 (2005). https://doi.org/10.1002/adma.200500663

    Article  CAS  Google Scholar 

  97. Zhang, N., Cheng, F., Liu, J., et al.: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu, X.F., Han, X.P., Hu, Y.X., et al.: ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale 6, 3522 (2014). https://doi.org/10.1039/c3nr06361e

    Article  CAS  PubMed  Google Scholar 

  99. Hu, X.F., Cheng, F.Y., Han, X.P., et al.: Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li–O2 batteries. Small 11, 809–813 (2015). https://doi.org/10.1002/smll.201401790

    Article  CAS  PubMed  Google Scholar 

  100. Voiry, D., Mohite, A., Chhowalla, M.: Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j

    Article  CAS  PubMed  Google Scholar 

  101. Chia, X., Eng, A.Y., Ambrosi, A., et al.: Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015). https://doi.org/10.1021/acs.chemrev.5b00287

    Article  CAS  PubMed  Google Scholar 

  102. Li, H.Y., Jia, X.F., Zhang, Q., et al.: Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 4, 1510–1537 (2018). https://doi.org/10.1016/j.chempr.2018.03.012

    Article  CAS  Google Scholar 

  103. Jaramillo, T.F., Jorgensen, K.P., Bonde, J., et al.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483

    Article  CAS  PubMed  Google Scholar 

  104. Hu, J., Zhang, C.X., Jiang, L., et al.: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1, 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011

    Article  CAS  Google Scholar 

  105. Lukowski, M.A., Daniel, A.S., Meng, F., et al.: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). https://doi.org/10.1021/ja404523s

    Article  CAS  PubMed  Google Scholar 

  106. Chen, S.L., Wang, L.P., Shao, R.W., et al.: Atomic structure and migration dynamics of MoS2/LixMoS2 interface. Nano Energy 48, 560–568 (2018). https://doi.org/10.1016/j.nanoen.2018.03.076

    Article  CAS  Google Scholar 

  107. Wang, X.F., Shen, X., Wang, Z.X., et al.: Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8, 11394–11400 (2014). https://doi.org/10.1021/nn505501v

    Article  CAS  PubMed  Google Scholar 

  108. Wang, H., Lu, Z., Xu, S., et al.: Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U.S.A. 110, 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, H., Lu, Z., Kong, D., et al.: Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8, 4940–4947 (2014). https://doi.org/10.1021/nn500959v

    Article  CAS  PubMed  Google Scholar 

  110. Shao-Horn, Y., Levasseur, S., Weill, F., et al.: Probing lithium and vacancy ordering in O3 layered LixCoO2 (x ≈ 0.5). J. Electrochem. Soc. 150, A366 (2003). https://doi.org/10.1149/1.1553787

    Article  CAS  Google Scholar 

  111. Subbaraman, R., Tripkovic, D., Chang, K.C., et al.: Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012). https://doi.org/10.1038/nmat3313

    Article  CAS  PubMed  Google Scholar 

  112. Yan, Z.H., Sun, H.M., Chen, X., et al.: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9, 2373 (2018). https://doi.org/10.1038/s41467-018-04788-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, S.W., Carlton, C., Risch, M., et al.: The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012). https://doi.org/10.1021/ja307814j

    Article  CAS  PubMed  Google Scholar 

  114. Bergmann, A., Martinez-Moreno, E., Teschner, D., et al.: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015). https://doi.org/10.1038/ncomms9625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Song, S.Z., Zhou, J., Su, X.Z., et al.: Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 11, 2945–2953 (2018). https://doi.org/10.1039/c8ee00773j

    Article  CAS  Google Scholar 

  116. Jin, Y.Z., Li, Z., Wang, J.Q., et al.: Tuning spin state of rock-salt-based oxides by manipulation of crystallinity for efficient oxygen electrocatalysis. Adv. Energy Mater. 8, 1703469 (2018). https://doi.org/10.1002/aenm.201703469

    Article  CAS  Google Scholar 

  117. Hinnemann, B., Moses, P.G., Bonde, J., et al.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005). https://doi.org/10.1021/ja0504690

    Article  CAS  PubMed  Google Scholar 

  118. Guo, S.J., Zhang, S., Sun, S.H.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 8526–8544 (2013). https://doi.org/10.1002/anie.201207186

    Article  CAS  Google Scholar 

  119. Luo, M.C., Guo, S.J.: Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59

    Article  CAS  Google Scholar 

  120. Mavrikakis, M., Hammer, B., Nørskov, J.K.: Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998). https://doi.org/10.1103/physrevlett.81.2819

    Article  Google Scholar 

  121. Huang, Z.F., Wang, J., Peng, Y.C., et al.: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 (2017). https://doi.org/10.1002/aenm.201700544

    Article  CAS  Google Scholar 

  122. Petrie, J.R., Cooper, V.R., Freeland, J.W., et al.: Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138, 2488–2491 (2016). https://doi.org/10.1021/jacs.5b11713

    Article  CAS  PubMed  Google Scholar 

  123. Strasser, P., Koh, S., Anniyev, T., et al.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). https://doi.org/10.1038/nchem.623

    Article  CAS  PubMed  Google Scholar 

  124. Yang, H.: Platinum-based electrocatalysts with core–shell nanostructures. Angew. Chem. Int. Ed. 50, 2674–2676 (2011). https://doi.org/10.1002/anie.201005868

    Article  CAS  Google Scholar 

  125. Strasser, P., Kühl, S.: Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy 29, 166–177 (2016). https://doi.org/10.1016/j.nanoen.2016.04.047

    Article  CAS  Google Scholar 

  126. Bu, L., Zhang, N., Guo, S., et al.: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016). https://doi.org/10.1126/science.aah6133

    Article  CAS  PubMed  Google Scholar 

  127. Luo, M., Zhao, Z., Zhang, Y., et al.: PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7

    Article  CAS  PubMed  Google Scholar 

  128. Medasani, B., Vasiliev, I.: Computational study of the surface properties of aluminum nanoparticles. Surf. Sci. 603, 2042–2046 (2009). https://doi.org/10.1016/j.susc.2009.03.025

    Article  CAS  Google Scholar 

  129. Wang, L., Zeng, Z., Gao, W., et al.: Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019). https://doi.org/10.1126/scienceaat8051

    Article  CAS  PubMed  Google Scholar 

  130. Cheng, W.R., Zhao, X., Su, H., et al.: Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8

    Article  CAS  Google Scholar 

  131. Yao, Y., Hu, S., Chen, W., et al.: Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2

    Article  CAS  Google Scholar 

  132. Du, M.S., Cui, L.S., Cao, Y., et al.: Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 137, 7397–7403 (2015). https://doi.org/10.1021/jacs.5b03034

    Article  CAS  PubMed  Google Scholar 

  133. Wang, H.T., Xu, S.C., Tsai, C., et al.: Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016). https://doi.org/10.1126/science.aaf7680

    Article  CAS  PubMed  Google Scholar 

  134. Ohzuku, T., Ueda, A.: Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994). https://doi.org/10.1149/1.2059267

    Article  CAS  Google Scholar 

  135. Jirkovský, J., Makarova, M., Krtil, P.: Particle size dependence of oxygen evolution reaction on nanocrystalline RuO2 and Ru0.8Co0.2O2−x. Electrochem. Commun. 8, 1417–1422 (2006). https://doi.org/10.1016/j.elecom.2006.06.027

    Article  CAS  Google Scholar 

  136. Esswein, A.J., McMurdo, M.J., Ross, P.N., et al.: Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009). https://doi.org/10.1021/jp904022e

    Article  CAS  Google Scholar 

  137. Perez-Alonso, F.J., McCarthy, D.N., Nierhoff, A., et al.: The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. 124, 4719–4721 (2012). https://doi.org/10.1002/ange.201200586

    Article  Google Scholar 

  138. Wang, T.Y., Gao, D.L., Zhuo, J.Q., et al.: Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem. Eur. J. 19, 11939–11948 (2013). https://doi.org/10.1002/chem.201301406

    Article  CAS  PubMed  Google Scholar 

  139. Roy, C., Sebok, B., Scott, S.B., et al.: Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018). https://doi.org/10.1038/s41929-018-0162-x

    Article  CAS  Google Scholar 

  140. Zhu, Q.L., Xu, Q.: Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1, 220–245 (2016). https://doi.org/10.1016/j.chempr.2016.07.005

    Article  CAS  Google Scholar 

  141. Wang, X.Q., Li, Z.J., Qu, Y.T., et al.: Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002

    Article  CAS  Google Scholar 

  142. Li, R., Lu, Y.Y., Lei, K.X., et al.: Resumption of the discharged Li–AgVO3 primary batteries for rechargeable Li–O2 batteries. Acta Chim. Sin. 75, 199 (2017). https://doi.org/10.6023/a16070329

    Article  CAS  Google Scholar 

  143. Han, M., Zhu, C., Zhao, Q., et al.: In situ atomic force microscopic studies of single tin nanoparticle: sodiation and desodiation in liquid electrolyte. ACS Appl. Mater. Interfaces 9, 28620–28626 (2017). https://doi.org/10.1021/acsami.7b08870

    Article  CAS  PubMed  Google Scholar 

  144. Cui, H., Li, H., Liu, J.D., et al.: Surface modification of Li-rich manganese-based cathode materials by chemical etching. Inorg. Chem. Front. 6, 1694–1700 (2019). https://doi.org/10.1039/c9qi00333a

    Article  CAS  Google Scholar 

  145. Wang, H.T., Lee, H.W., Deng, Y., et al.: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Y.F., Han, P., Lv, X., et al.: Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2, 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021

    Article  CAS  Google Scholar 

  147. Jiang, K., Wang, H., Cai, W.B., et al.: Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11, 6451–6458 (2017). https://doi.org/10.1021/acsnano.7b03029

    Article  CAS  PubMed  Google Scholar 

  148. Li, C.W., Kanan, M.W.: CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978

    Article  CAS  PubMed  Google Scholar 

  149. Eilert, A., Cavalca, F., Roberts, F.S., et al.: Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017). https://doi.org/10.1021/acs.jpclett.6b02273

    Article  CAS  PubMed  Google Scholar 

  150. Jia, Y., Jiang, K., Wang, H.T., et al.: The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5, 1371–1397 (2019). https://doi.org/10.1016/j.chempr.2019.02.008

    Article  CAS  Google Scholar 

  151. Liu, G., Li, J., Fu, J., et al.: An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 31, e1806761 (2019). https://doi.org/10.1002/adma.201806761

    Article  CAS  PubMed  Google Scholar 

  152. Li, W., Wang, D., Zhang, Y., et al.: Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 32, 1907879 (2020). https://doi.org/10.1002/adma.201907879

    Article  CAS  Google Scholar 

  153. Kan, D., Orikasa, Y., Nitta, K., et al.: Overpotential-induced introduction of oxygen vacancy in La0.67Sr0.33MnO3 surface and its impact on oxygen reduction reaction catalytic activity in alkaline solution. J. Phys. Chem. C 120, 6006–6010 (2016). https://doi.org/10.1021/acs.jpcc.5b11664

    Article  CAS  Google Scholar 

  154. He, Q., Xie, H., Rehman, Z.U., et al.: Highly defective Fe-based oxyhydroxides from electrochemical reconstruction for efficient oxygen evolution catalysis. ACS Energy Lett. 3, 861–868 (2018). https://doi.org/10.1021/acsenergylett.8b00342

    Article  CAS  Google Scholar 

  155. Zhang, N., Feng, X.B., Rao, D.W., et al.: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, X., Yu, M., Yan, Z.H., et al.: Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. (2020). https://doi.org/10.31635/ccschem.020.202000194

    Article  Google Scholar 

  157. Wang, Y.Y., Zhang, Y.Q., Liu, Z.J., et al.: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 56, 5867–5871 (2017). https://doi.org/10.1002/anie.201701477

    Article  CAS  Google Scholar 

  158. Chen, D.W., Qiao, M., Lu, Y.R., et al.: Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 8691–8696 (2018). https://doi.org/10.1002/anie.201805520

    Article  CAS  Google Scholar 

  159. Wang, T.Y., Su, D.W., Shanmukaraj, D., et al.: Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 1, 200–237 (2018). https://doi.org/10.1007/s41918-018-0009-9

    Article  CAS  Google Scholar 

  160. Wang, C.C., Wang, L.B., Li, F.J., et al.: Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 29, 1702212 (2017). https://doi.org/10.1002/adma.201702212

    Article  CAS  Google Scholar 

  161. Shang, Y., Li, X.X., Song, J.J., et al.: Unconventional Mn vacancies in Mn–Fe Prussian blue analogs: suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6, 1804–1818 (2020). https://doi.org/10.1016/j.chempr.2020.05.004

    Article  CAS  Google Scholar 

  162. Zhang, Q., Wang, Z.J., Zhang, S.L., et al.: Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energy Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y

    Article  CAS  Google Scholar 

  163. Lei, K.X., Wang, C.C., Liu, L.J., et al.: A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/anie.201801389

    Article  CAS  Google Scholar 

  164. Ren, X.C., Zhang, X.Q., Xu, R., et al.: Analyzing energy materials by cryogenic electron microscopy. Adv. Mater. 32, 1908293 (2020). https://doi.org/10.1002/adma.201908293

    Article  CAS  Google Scholar 

  165. Lu, J., Wu, T.P., Amine, K.: State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2, 17011 (2017). https://doi.org/10.1038/nenergy.2017.11

    Article  CAS  Google Scholar 

  166. Chu, Y.L., Shen, Y.B., Guo, F., et al.: Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y

    Article  Google Scholar 

  167. Hwang, S., Chen, X.B., Zhou, G.W., et al.: In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. 10, 1902105 (2020). https://doi.org/10.1002/aenm.201902105

    Article  CAS  Google Scholar 

  168. Fan, Z., Zhang, L., Baumann, D., et al.: In situ transmission electron microscopy for energy materials and devices. Adv. Mater. 31, 1900608 (2019). https://doi.org/10.1002/adma.201900608

    Article  CAS  Google Scholar 

  169. Wu, X.Y., Li, S.M., Yang, B., et al.: In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries. Electrochem. Energy Rev. 2, 467–491 (2019). https://doi.org/10.1007/s41918-019-00046-2

    Article  CAS  Google Scholar 

  170. Zhang, W., Seo, D.H., Chen, T., et al.: Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020). https://doi.org/10.1126/science.aax3520

    Article  CAS  PubMed  Google Scholar 

  171. Yuan, Y.F., Li, M., Bai, Z.Y., et al.: The absence and importance of operando techniques for metal-free catalysts. Adv. Mater. 31, 1805609 (2019). https://doi.org/10.1002/adma.201805609

    Article  CAS  Google Scholar 

  172. Fan, G.L., Sun, H.M., Cheng, F.Y., et al.: Progress in DFT study on 3d transition metal oxide/hydroxide electrocatalyst for oxygen evolution. Sci. Sin. Chim 49, 741–751 (2019). https://doi.org/10.1360/n032018-00252

    Article  Google Scholar 

  173. Sivanantham, A., Ganesan, P., Vinu, A., et al.: Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10, 463–493 (2020). https://doi.org/10.1021/acscatal.9b04216

    Article  CAS  Google Scholar 

  174. Sun, H., Xu, X., Yan, Z., et al.: Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 29, 8539–8547 (2017). https://doi.org/10.1021/acs.chemmater.7b03627

    Article  CAS  Google Scholar 

  175. Tao, L., Wang, Y.Q., Zou, Y.Q., et al.: Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater. 10, 1901227 (2020). https://doi.org/10.1002/aenm.201901227

    Article  CAS  Google Scholar 

  176. Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  177. Tao, L., Qiao, M., Jin, R., et al.: Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. Int. Ed. 58, 1019–1024 (2019). https://doi.org/10.1002/anie.201810207

    Article  CAS  Google Scholar 

  178. Liu, M., Wang, L., Zhao, K., et al.: Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d

    Article  CAS  Google Scholar 

  179. Cheng, N.C., Zhang, L., Doyle-Davis, K., et al.: Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6

    Article  Google Scholar 

  180. Zhang, L., Fan, G.L., Xu, W.C., et al.: Isolated diatomic Zn–Fe in N-doped carbon for electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 56, 11957–11960 (2020). https://doi.org/10.1039/d0cc04843g

    Article  CAS  Google Scholar 

  181. Zhang, L., Yan, Z.H., Chen, X., et al.: Facile synthesis of amorphous MoSx–Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. Chem. Commun. 56, 2763–2766 (2020). https://doi.org/10.1039/c9cc08771k

    Article  CAS  Google Scholar 

  182. Wang, H.L., Zhu, Q.L., Zou, R.Q., et al.: Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002

    Article  CAS  Google Scholar 

  183. Zhang, X., Chen, A., Zhong, M., et al.: Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2, 29–104 (2019). https://doi.org/10.1007/s41918-018-0024-x

    Article  CAS  Google Scholar 

  184. Zou, Z.H., Wang, T.T., Zhao, X.H., et al.: Expediting in situ electrochemical activation of two-dimensional metal–organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal. 9, 7356–7364 (2019). https://doi.org/10.1021/acscatal.9b00072

    Article  CAS  Google Scholar 

  185. Xu, W.C., Fan, G.L., Chen, J.L., et al.: Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020). https://doi.org/10.1002/anie.201914335

    Article  CAS  Google Scholar 

  186. Guo, W.H., Zhang, K.X., Liang, Z.B., et al.: Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019). https://doi.org/10.1039/c9cs00159j

    Article  CAS  PubMed  Google Scholar 

  187. Yao, Y., Wang, J., Shahid, U.B., et al.: Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges. Electrochem. Energy Rev. 3, 239–270 (2020). https://doi.org/10.1007/s41918-019-00061-3

    Article  CAS  Google Scholar 

  188. Dai, C.C., Sun, Y.M., Chen, G., et al.: Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem. Int. Ed. 132, 9504–9508 (2020). https://doi.org/10.1002/ange.202002923

    Article  Google Scholar 

  189. Jiang, K., Zhao, J.J., Wang, H.T.: Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 30, 2003321 (2020). https://doi.org/10.1002/adfm.202003321

    Article  CAS  Google Scholar 

  190. Jung, E., Shin, H., Lee, B.H., et al.: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5

    Article  CAS  PubMed  Google Scholar 

  191. Preethi, L.K., Mathews, T.: Electrochemical tuning of heterojunctions in TiO2 nanotubes for efficient solar water splitting. Catal. Sci. Technol. 9, 5425–5432 (2019). https://doi.org/10.1039/c9cy01216h

    Article  CAS  Google Scholar 

  192. Caddeo, F., Vogt, R., Weil, D., et al.: Tuning the size and shape of NanoMOFs via templated electrodeposition and subsequent electrochemical oxidation. ACS Appl. Mater. Interfaces. 11, 25378–25387 (2019). https://doi.org/10.1021/acsami.9b04449

    Article  CAS  PubMed  Google Scholar 

  193. Gu, Y.H., Zhang, X.Y., Du, Q., et al.: Electrochemical tuning induced oxygen vacancies for the photoluminescence enhancement. Ceram. Int. 46, 4071–4078 (2020). https://doi.org/10.1016/j.ceramint.2019.09.089

    Article  CAS  Google Scholar 

  194. Babu, S.P., Elumalai, P.: Electrochemical tuning of Pd100–xAux bimetallics towards ethanol oxidation: effect of an induced d-band center shift and oxophilicity. Phys. Chem. Chem. Phys. 21, 8246–8256 (2019). https://doi.org/10.1039/c8cp07500j

    Article  CAS  PubMed  Google Scholar 

  195. Cheng, Q., Wu, C., Chen, J.W., et al.: Electrochemical tuning the activity of nickel nanoparticle and application in sensitive detection of chemical oxygen demand. J. Phys. Chem. C 115, 22845–22850 (2011). https://doi.org/10.1021/jp207442u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOST (No. 2017YFA0206700), NSFC (Nos. 21925503, 21871149, 51801105, 51901104) and MOE (B12015) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, L., Wang, L. et al. The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochem. Energ. Rev. 4, 146–168 (2021). https://doi.org/10.1007/s41918-020-00089-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00089-w

Keywords

PACS codes

Navigation