Skip to main content
Log in

The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Typical catalyst inks in proton exchange membrane fuel cells (PEMFCs) are composed of a catalyst, its support, an ionomer and a solvent and are used with solution processing approaches to manufacture conventional catalyst layers (CLs). Because of this, catalyst ink formulation and deposition processes are closely related to CL structure and performance. However, catalyst inks with ideal rheology and optimized electrochemical performances remain lacking in the large-scale application of PEMFCs. To address this, this review will summarize current progress in the formulation, characterization, modeling and deposition of catalyst inks. In addition, this review will highlight recent advancements in catalyst ink materials and discuss corresponding complex interactions. This review will also present various catalyst ink dispersion methods with insights into their stability and introduce the application of small-angle scattering and cryogenic transmission electron microscopy (cryo-TEM) technologies in the characterization of catalyst ink microstructures. Finally, recent studies in the kinetic modeling and deposition of catalyst inks will be analyzed.

Graphic Abstract

The formulation and the deposition process of catalyst inks determine the formation of catalyst. The interaction between the components of the catalyst ink governs the microstructure and processability of the ink, thereby affecting the microstructure and performance of the CL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Litster, S., McLean, G.: PEM fuel cell electrodes. J. Power Sources 130, 61–76 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  CAS  Google Scholar 

  2. Majlan, E.H., Rohendi, D., Daud, W.R.W., et al.: Electrode for proton exchange membrane fuel cells: a review. Renew. Sust. Energ. Rev. 89, 117–134 (2018). https://doi.org/10.1016/j.rser.2018.03.007

    Article  CAS  Google Scholar 

  3. Karan, K.: PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr. Opin. Electrochem. 5, 27–35 (2017). https://doi.org/10.1016/j.coelec.2017.08.018

    Article  CAS  Google Scholar 

  4. Huang, J., Li, Z., Zhang, J.B.: Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front. Energy 11, 334–364 (2017). https://doi.org/10.1007/s11708-017-0490-6

    Article  Google Scholar 

  5. Hou, Y., Deng, H., Pan, F., et al.: Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Appl. Energ. 253, 113561 (2019). https://doi.org/10.1016/j.apenergy.2019.113561

    Article  CAS  Google Scholar 

  6. Kurihara, Y., Mabuchi, T., Tokumasu, T.: Molecular analysis of structural effect of ionomer on oxygen permeation properties in PEFC. J. Electrochem. Soc. 164, F628–F637 (2017). https://doi.org/10.1149/2.1301706jes

    Article  CAS  Google Scholar 

  7. Wu, H.W.: A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016). https://doi.org/10.1016/j.apenergy.2015.12.075

    Article  CAS  Google Scholar 

  8. Holdcroft, S.: Fuel cell catalyst layers: a polymer science perspective. Chem. Mater. 26, 381–393 (2014). https://doi.org/10.1021/cm401445h

    Article  CAS  Google Scholar 

  9. Ioroi, T., Siroma, Z., Yamazaki, S.I., et al.: Electrocatalysts for PEM fuel cells. Adv. Energy Mater. 9, 1801284 (2019). https://doi.org/10.1002/aenm.201801284

    Article  CAS  Google Scholar 

  10. Dixit, M.B., Harkey, B.A., Shen, F.Y., et al.: Catalyst layer ink interactions that affect coatability. J. Electrochem. Soc. 165, F264–F271 (2018). https://doi.org/10.1149/2.0191805jes

    Article  CAS  Google Scholar 

  11. So, M., Ohnishi, T., Park, K., et al.: The effect of solvent and ionomer on agglomeration in fuel cell catalyst inks: simulation by the discrete element method. Int. J. Hydrog. Energy 44, 28984–28995 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.012

    Article  CAS  Google Scholar 

  12. Mashio, T., Ohma, A., Tokumasu, T.: Molecular dynamics study of ionomer adsorption at a carbon surface in catalyst ink. Electrochim. Acta 202, 14–23 (2016). https://doi.org/10.1016/j.electacta.2016.04.004

    Article  CAS  Google Scholar 

  13. Sassin, M.B., Garsany, Y., Gould, B.D., et al.: Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells. Anal. Chem. 89, 511–518 (2017). https://doi.org/10.1021/acs.analchem.6b03005

    Article  CAS  PubMed  Google Scholar 

  14. Liu, R.L., Zhou, W., Wan, L.Y., et al.: Electrostatic spraying of membrane electrode for proton exchange membrane fuel cell. Curr. Appl. Phys. 20, 11–17 (2020). https://doi.org/10.1016/j.cap.2019.09.016

    Article  Google Scholar 

  15. Chen, G.H., Kelly, D., Shine, A., et al.: Electrospinning deposition of poly(acrylic acid): platinum/carbon catalyst ink to enhance polymer electrolyte membrane fuel cell performance. MRS Commun. 9, 1343–1348 (2019). https://doi.org/10.1557/mrc.2019.144

    Article  CAS  Google Scholar 

  16. Ding, X.Y., Didari, S., Fuller, T.F., et al.: Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers. J. Electrochem. Soc. 159, B746–B753 (2012). https://doi.org/10.1149/2.103206jes

    Article  CAS  Google Scholar 

  17. Gomes Bezerra, C.A., Deiner, L.J., Tremiliosi-Filho, G.: Unexpected performance of inkjet-printed membrane electrode assemblies for proton exchange membrane fuel cells. Adv. Eng. Mater. 21, 1900703 (2019). https://doi.org/10.1002/adem.201900703

    Article  CAS  Google Scholar 

  18. Park, I.S., Li, W., Manthiram, A.: Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. J. Power Sources 195, 7078–7082 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.004

    Article  CAS  Google Scholar 

  19. Wang, W.T., Chen, S.Q., Li, J.J., et al.: Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int. J. Hydrog. Energy 40, 4649–4658 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.027

    Article  CAS  Google Scholar 

  20. Xiong, L., Manthiram, A.: High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells. Electrochim. Acta 50, 3200–3204 (2005). https://doi.org/10.1016/j.electacta.2004.11.049

    Article  CAS  Google Scholar 

  21. Mauger, S.A., Neyerlin, K.C., Yang-Neyerlin, A.C., et al.: Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers. J. Electrochem. Soc. 165, F1012–F1018 (2018). https://doi.org/10.1149/2.0091813jes

    Article  CAS  Google Scholar 

  22. Banham, D., Ye, S.: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2, 629–638 (2017). https://doi.org/10.1021/acsenergylett.6b00644

    Article  CAS  Google Scholar 

  23. Lin, R., Cai, X., Zeng, H., et al.: Stability of high-performance Pt-based catalysts for oxygen reduction reactions. Adv. Mater. 30, 1705332 (2018). https://doi.org/10.1002/adma.201705332

    Article  CAS  Google Scholar 

  24. Mahata, A., Nair, A.S., Pathak, B.: Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catal. Sci. Technol. 9, 4835–4863 (2019). https://doi.org/10.1039/C9CY00895K

    Article  CAS  Google Scholar 

  25. Liu, M.L., Zhao, Z.P., Duan, X.F., et al.: Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31, 1802234 (2019). https://doi.org/10.1002/adma.201802234

    Article  CAS  Google Scholar 

  26. Lang, P., Yuan, N.N., Jiang, Q.Q., et al.: Recent advances and prospects of metal-based catalysts for oxygen reduction reaction. Energy Technol. 8, 1900984 (2020). https://doi.org/10.1002/ente.201900984

    Article  CAS  Google Scholar 

  27. Yano, H., Watanabe, M., Iiyama, A., et al.: Particle-size effect of Pt cathode catalysts on durability in fuel cells. Nano Energy 29, 323–333 (2016). https://doi.org/10.1016/j.nanoen.2016.02.016

    Article  CAS  Google Scholar 

  28. Shinozaki, K., Morimoto, Y., Pivovar, B.S., et al.: Re-examination of the Pt particle size effect on the oxygen reduction reaction for ultrathin uniform Pt/C catalyst layers without influence from nafion. Electrochim. Acta 213, 783–790 (2016). https://doi.org/10.1016/j.electacta.2016.08.001

    Article  CAS  Google Scholar 

  29. Antolini, E.: Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B 181, 298–313 (2016). https://doi.org/10.1016/j.apcatb.2015.08.007

    Article  CAS  Google Scholar 

  30. Zamel, N.: The catalyst layer and its dimensionality: a look into its ingredients and how to characterize their effects. J. Power Sources 309, 141–159 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.091

    Article  CAS  Google Scholar 

  31. Hou, J.B., Yang, M., Ke, C.C., et al.: Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization. EnergyChem 2, 100023 (2020). https://doi.org/10.1016/j.enchem.2019.100023

    Article  Google Scholar 

  32. Beltrán-Gastélum, M., Salazar-Gastélum, M.I., Flores-Hernández, J.R., et al.: Pt-Au nanoparticles on graphene for oxygen reduction reaction: stability and performance on proton exchange membrane fuel cell. Energy 181, 1225–1234 (2019). https://doi.org/10.1016/j.energy.2019.06.033

    Article  CAS  Google Scholar 

  33. Beltrán-Gastélum, M., Salazar-Gastélum, M.I., Félix-Navarro, R.M., et al.: Evaluation of PtAu/MWCNT (multiwalled carbon nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell. Energy 109, 446–455 (2016). https://doi.org/10.1016/j.energy.2016.04.132

    Article  CAS  Google Scholar 

  34. Wang, J., Xue, Q., Li, B., et al.: Preparation of a graphitized-carbon-supported PtNi octahedral catalyst and application in a proton-exchange membrane fuel cell. ACS Appl. Mater. Interfaces. 12, 7047–7056 (2020). https://doi.org/10.1021/acsami.9b17248

    Article  CAS  PubMed  Google Scholar 

  35. Taniguchi, K., Shinoda, K., Cuya Huaman, J.L., et al.: Designed synthesis of highly catalytic Ni–Pt nanoparticles for fuel cell applications. SN Appl. Sci. 1, 124 (2019). https://doi.org/10.1007/s42452-018-0133-5

    Article  CAS  Google Scholar 

  36. Xiong, X.L., Chen, W.H., Wang, W., et al.: Pt–Pd nanodendrites as oxygen reduction catalyst in polymer–electrolyte–membrane fuel cell. Int. J. Hydrog. Energy 42, 25234–25243 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.162

    Article  CAS  Google Scholar 

  37. Bharti, A., Cheruvally, G.: Surfactant assisted synthesis of Pt–Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 43, 14729–14741 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.009

    Article  CAS  Google Scholar 

  38. Wang, R.Y., Li, D.G., Maurya, S., et al.: Ultrafine Pt cluster and RuO2 heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horiz. 5, 316–324 (2020). https://doi.org/10.1039/c9nh00533a

    Article  CAS  Google Scholar 

  39. Sun, M.M., Lv, Y., Song, Y.J., et al.: CO-tolerant PtRu@h-BN/C core–shell electrocatalysts for proton exchange membrane fuel cells. Appl. Surf. Sci. 450, 244–250 (2018). https://doi.org/10.1016/j.apsusc.2018.04.170

    Article  CAS  Google Scholar 

  40. Yin, Y., Liu, J., Chang, Y.F., et al.: Design of Pt–C/Fe–N–S–C cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity. Electrochim. Acta 296, 450–457 (2019). https://doi.org/10.1016/j.electacta.2018.11.048

    Article  CAS  Google Scholar 

  41. Du, X.X., He, Y., Wang, X.X., et al.: Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 9, 2623–2632 (2016). https://doi.org/10.1039/c6ee01204c

    Article  CAS  Google Scholar 

  42. Yang, D.J., Yan, Z.Y., Li, B., et al.: Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrog. Energy 41, 18592–18601 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.159

    Article  CAS  Google Scholar 

  43. Li, J.R., Sharma, S., Liu, X.M., et al.: Hard-magnet L10–CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016

    Article  CAS  Google Scholar 

  44. Jung, W.S., Popov, B.N.: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. ACS Appl. Mater. Interfaces. 9, 23679–23686 (2017). https://doi.org/10.1021/acsami.7b04750

    Article  CAS  PubMed  Google Scholar 

  45. Lim, T., Kim, O.H., Sung, Y.E., et al.: Preparation of onion-like Pt-terminated Pt–Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells. J. Power Sources 316, 124–131 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.068

    Article  CAS  Google Scholar 

  46. Wu, M.X., Wu, X., Zhang, L., et al.: Cu@Pt catalysts prepared by galvanic replacement of polyhedral copper nanoparticles for polymer electrolyte membrane fuel cells. Electrochim. Acta 306, 167–174 (2019). https://doi.org/10.1016/j.electacta.2019.03.111

    Article  CAS  Google Scholar 

  47. Ren, X.F., Lv, Q., Liu, L.F., et al.: Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels 4, 15–30 (2020). https://doi.org/10.1039/c9se00460b

    Article  CAS  Google Scholar 

  48. Kongkanand, A., Subramanian, N.P., Yu, Y.C., et al.: Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core–shell catalyst. ACS Catal. 6, 1578–1583 (2016). https://doi.org/10.1021/acscatal.5b02819

    Article  CAS  Google Scholar 

  49. Wang, K.C., Huang, H.C., Wang, C.H.: Synthesis of Pd@Pt3Co/C core-shell structure as catalyst for oxygen reduction reaction in proton exchange membrane fuel cell. Int. J. Hydrog. Energy 42, 11771–11778 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.084

    Article  CAS  Google Scholar 

  50. Hwang, C.K., Kim, J.M., Hwang, S., et al.: Porous strained Pt nanostructured thin-film electrocatalysts via dealloying for PEM fuel cells. Adv. Mater. Interfaces 7, 1901326 (2020). https://doi.org/10.1002/admi.201901326

    Article  CAS  Google Scholar 

  51. Vorokhta, M., Khalakhan, I., Matolínová, I., et al.: PLD prepared nanostructured Pt–CeO2 thin films containing ionic platinum. Appl. Surf. Sci. 396, 278–283 (2017). https://doi.org/10.1016/j.apsusc.2016.10.119

    Article  CAS  Google Scholar 

  52. Sui, S., Wei, Z.X., Su, K.H., et al.: Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for polymer electrolyte membrane fuel cells (PEMFCs). Int. J. Hydrog. Energy 43, 20041–20049 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.009

    Article  CAS  Google Scholar 

  53. Wang, W., Lv, F., Lei, B., et al.: Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 28, 10117–10141 (2016). https://doi.org/10.1002/adma.201601909

    Article  CAS  PubMed  Google Scholar 

  54. Sun, R.L., Xia, Z.X., Shang, L., et al.: Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. J. Mater. Chem. A 5, 15260–15265 (2017). https://doi.org/10.1039/c7ta02500a

    Article  CAS  Google Scholar 

  55. Du, H.T., Zhang, X.P., Tan, Q.Q., et al.: A Cu3P–CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reactions. Chem. Commun. 53, 12012–12015 (2017). https://doi.org/10.1039/c7cc07802a

    Article  CAS  Google Scholar 

  56. Dogan, D.C., Cho, S., Hwang, S.M., et al.: Highly durable supportless pt hollow spheres designed for enhanced oxygen transport in cathode catalyst layers of proton exchange membrane fuel cells. ACS Appl. Mater. Inter. 8, 27730–27739 (2016). https://doi.org/10.1021/acsami.6b08177

    Article  CAS  Google Scholar 

  57. Pizzutilo, E., Knossalla, J., Geiger, S., et al.: The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt–Co nanocatalysts for PEMFC. Adv. Energy Mater. 7, 1700835 (2017). https://doi.org/10.1002/aenm.201700835

    Article  CAS  Google Scholar 

  58. Wang, X.X., Swihart, M.T., Wu, G.: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019). https://doi.org/10.1038/s41929-019-0304-9

    Article  CAS  Google Scholar 

  59. Pan, L.J., Ott, S., Dionigi, F., et al.: Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 18, 61–71 (2019). https://doi.org/10.1016/j.coelec.2019.10.011

    Article  CAS  Google Scholar 

  60. Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 88, 1–24 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  61. Shao, Y.Y., Liu, J., Wang, Y., et al.: Novel catalyst support materials for PEMfuelcells: current status and future prospects. J. Mater. Chem. 19, 46–59 (2009). https://doi.org/10.1039/b808370c

    Article  CAS  Google Scholar 

  62. Dicks, A.L.: The role of carbon in fuel cells. J. Power Sources 156, 128–141 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.054

    Article  CAS  Google Scholar 

  63. Samad, S., Loh, K.S., Wong, W.Y., et al.: Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 43, 7823–7854 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.154

    Article  CAS  Google Scholar 

  64. You, P.Y., Kamarudin, S.K.: Recent progress of carbonaceous materials in fuel cell applications: an overview. Chem. Eng. J. 309, 489–502 (2017). https://doi.org/10.1016/j.cej.2016.10.051

    Article  CAS  Google Scholar 

  65. Mansor, M., Timmiati, S.N., Lim, K.L., et al.: Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. Int. J. Hydrog. Energy 44, 14744–14769 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.100

    Article  CAS  Google Scholar 

  66. Antolini, E.: Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 123124, 52–68 (2012). https://doi.org/10.1016/j.apcatb.2012.04.022

    Article  CAS  Google Scholar 

  67. Luo, C., Xie, H., Wang, Q., et al.: A review of the application and performance of carbon nanotubes in fuel cells. J. Nanomater. 2015, 1–10 (2015). https://doi.org/10.1155/2015/560392

    Article  CAS  Google Scholar 

  68. Gan, L., Du, H.D., Li, B.H., et al.: The effect of particle size on the interaction of Pt catalyst particles with a carbon black support. New Carbon Mater. 25, 53–59 (2010). https://doi.org/10.1016/s1872-5805(09)60015-9

    Article  CAS  Google Scholar 

  69. Wang, X., Hsing, I.M., Yue, P.L.: Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells. J. Power Sources 96, 282–287 (2001). https://doi.org/10.1016/S0378-7753(00)00625-X

    Article  CAS  Google Scholar 

  70. Padgett, E., Andrejevic, N., Liu, Z.Y., et al.: Editors’ choice: connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018). https://doi.org/10.1149/2.0541803jes

    Article  CAS  Google Scholar 

  71. Cetinbas, F.C., Ahluwalia, R.K., Kariuki, N.N., et al.: Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J. Electrochem. Soc. 167, 013508 (2019). https://doi.org/10.1149/2.0082001jes

    Article  CAS  Google Scholar 

  72. Park, Y.C., Tokiwa, H., Kakinuma, K., et al.: Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.091

    Article  CAS  Google Scholar 

  73. Yu, P.T., Liu, Z.Y., Makharia, R.: Investigation of carbon corrosion behavior and kinetics in proton exchange membrane fuel cell cathode electrodes. J. Electrochem. Soc. 160, F645–F650 (2013). https://doi.org/10.1149/2.120306jes

    Article  CAS  Google Scholar 

  74. Devrim, Y., Arıca, E.D.: Investigation of the effect of graphitized carbon nanotube catalyst support for high temperature PEM fuel cells. Int. J. Hydrog. Energy 45, 3609–3617 (2020). https://doi.org/10.1016/j.ijhydene.2019.01.111

    Article  CAS  Google Scholar 

  75. Zhu, S.Y., Zheng, J.S., Huang, J., et al.: Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells. J. Power Sources 393, 19–31 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.100

    Article  CAS  Google Scholar 

  76. Berber, M.R., Hafez, I.H., Fujigaya, T., et al.: A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci. Rep. 5, 16711 (2015). https://doi.org/10.1038/srep16711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Y., et al.: Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell. Macromol. Symp. 375, 1600188 (2017). https://doi.org/10.1002/masy.201600188

    Article  CAS  Google Scholar 

  78. Chung, S., Shin, D., Choun, M., et al.: Improved water management of Pt/C cathode modified by graphitized carbon nanofiber in proton exchange membrane fuel cell. J. Power Sources 399, 350–356 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.126

    Article  CAS  Google Scholar 

  79. Li, M.W., Wu, X., Zeng, J.H., et al.: Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells. Electrochim. Acta 182, 351–360 (2015). https://doi.org/10.1016/j.electacta.2015.09.122

    Article  CAS  Google Scholar 

  80. Yarlagadda, V., Carpenter, M.K., Moylan, T.E., et al.: Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018). https://doi.org/10.1021/acsenergylett.8b00186

    Article  CAS  Google Scholar 

  81. Prithi, J.A., Rajalakshmi, N., Ranga Rao, G.: Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 43, 4716–4725 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.137

    Article  CAS  Google Scholar 

  82. Sultana, K.N., Worku, D., Hossain, M.T.Z., et al.: Synthesis of graphitic mesoporous carbon from metal impregnated silica template for proton exchange membrane fuel cell application. Fuel Cells 19, 27–34 (2019). https://doi.org/10.1002/fuce.201800034

    Article  CAS  Google Scholar 

  83. Liu, S.G., Huang, S.P.: Theoretical insights into the activation of O2 by Pt single atom and Pt4 nanocluster on functionalized graphene support: critical role of Pt positive polarized charges. Carbon 115, 11–17 (2017). https://doi.org/10.1016/j.carbon.2016.12.094

    Article  CAS  Google Scholar 

  84. Devrim, Y., Arıca, E.D., Albostan, A.: Graphene based catalyst supports for high temperature PEM fuel cell application. Int. J. Hydrog. Energy 43, 11820–11829 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.047

    Article  CAS  Google Scholar 

  85. Balu, R., Choudhury, N.R., Mata, J.P., et al.: Evolution of the interfacial structure of a catalyst ink with the quality of the dispersing solvent: a contrast variation small-angle and ultrasmall-angle neutron scattering investigation. ACS Appl. Mater. Interfaces. 11, 9934–9946 (2019). https://doi.org/10.1021/acsami.8b20645

    Article  CAS  PubMed  Google Scholar 

  86. Orfanidi, A., Rheinländer, P.J., Schulte, N., et al.: Ink solvent dependence of the ionomer distribution in the catalyst layer of a PEMFC. J. Electrochem. Soc. 165, F1254–F1263 (2018). https://doi.org/10.1149/2.1251814jes

    Article  CAS  Google Scholar 

  87. Song, C., Park, J.: Effect of dispersion solvents in catalyst inks on the performance and durability of catalyst layers in proton exchange membrane fuel cells. Energies 12, 549 (2019). https://doi.org/10.3390/en12030549

    Article  CAS  Google Scholar 

  88. Koh, B.S., Yi, S.C.: Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition. J. Ceram. Process Res. 18, 810–814 (2017)

    Google Scholar 

  89. Kim, T.H., Yi, J.Y., Jung, C.Y., et al.: Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42, 478–485 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.015

    Article  CAS  Google Scholar 

  90. Kim, Y.S., Welch, C.F., Mack, N.H., et al.: Highly durable fuel cell electrodes based on ionomers dispersed in glycerol. Phys. Chem. Chem. Phys. 16, 5927–5932 (2014). https://doi.org/10.1039/c4cp00496e

    Article  CAS  PubMed  Google Scholar 

  91. Yang, F., Xin, L., Uzunoglu, A., et al.: Investigation of solvent effects on the dispersion of carbon agglomerates and nafion ionomer particles in catalyst inks using ultra small angle X-ray scattering method. ECS Trans. 75, 361–371 (2016). https://doi.org/10.1149/07514.0361ecst

    Article  CAS  Google Scholar 

  92. Huang, D.C., Yu, P.J., Liu, F.J., et al.: Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance. Int. J. Electrochem. Sci. 6, 2551–2565 (2011)

    CAS  Google Scholar 

  93. Shin, S.J., Lee, J.K., Ha, H.Y., et al.: Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 106, 146–152 (2002). https://doi.org/10.1016/S0378-7753(01)01045-X

    Article  CAS  Google Scholar 

  94. Shukla, S., Bhattacharjee, S., Weber, A.Z., et al.: Experimental and theoretical analysis of ink dispersion stability for polymer electrolyte fuel cell applications. J. Electrochem. Soc. 164, F600–F609 (2017). https://doi.org/10.1149/2.0961706jes

    Article  CAS  Google Scholar 

  95. Sharma, R., Grahl-Madsen, L., Andersen, S.M.: Influence of dispersion media on Nafion ionomer distribution in proton exchange membrane fuel cell catalyst carbon support. Mater. Chem. Phys. 226, 66–72 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.015

    Article  CAS  Google Scholar 

  96. Jorge, M., Lue, L.: The dielectric constant: reconciling simulation and experiment. J. Chem. Phys. 150, 084108 (2019). https://doi.org/10.1063/1.5080927

    Article  CAS  PubMed  Google Scholar 

  97. Uchida, M., Aoyama, Y., Eda, N., et al.: New preparation method for polymer–electrolyte fuel cells. J. Electrochem. Soc. 142, 463–468 (1995). https://doi.org/10.1149/1.2044068

    Article  CAS  Google Scholar 

  98. Shukla, S., Bhattacharjee, S., Secanell, M.: Rationalizing catalyst inks for PEMFC electrodes based on colloidal interactions. ECS Trans. 58, 1409–1428 (2013). https://doi.org/10.1149/05801.1409ecst

    Article  CAS  Google Scholar 

  99. Ngo, T.T., Yu, T.L., Lin, H.L.: Nafion-based membrane electrode assemblies prepared from catalyst inks containing alcohol/water solvent mixtures. J. Power Sources 238, 1–10 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.055

    Article  CAS  Google Scholar 

  100. Therdthianwong, A., Ekdharmasuit, P., Therdthianwong, S.: Fabrication and performance of membrane electrode assembly prepared by a catalyst-coated membrane method: effect of solvents used in a catalyst ink mixture. Energy Fuels 24, 1191–1196 (2010). https://doi.org/10.1021/ef901105k

    Article  CAS  Google Scholar 

  101. Song, W., Yu, H.M., Hao, L.X., et al.: Effect of catalytic ink on sub-freezing endurance of PEMFCs. Int. J. Hydrog. Energy 35, 11129–11137 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.041

    Article  CAS  Google Scholar 

  102. Chisaka, M., Daiguji, H.: Effect of organic solvents on catalyst layer structure in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 156, B22–B26 (2009). https://doi.org/10.1149/1.3000592

    Article  CAS  Google Scholar 

  103. Fernández, R., Ferreira-Aparicio, P., Daza, L.: PEMFC electrode preparation: influence of the solvent composition and evaporation rate on the catalytic layer microstructure. J. Power Sources 151, 18–24 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.048

    Article  CAS  Google Scholar 

  104. Yang, T.H., Yoon, Y.G., Park, G.G., et al.: Fabrication of a thin catalyst layer using organic solvents. J. Power Sources 127, 230–233 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.018

    Article  CAS  Google Scholar 

  105. Kim, J.H., Ha, H.Y., Oh, I.H., et al.: Influence of the solvent in anode catalyst ink on the performance of a direct methanol fuel cell. J. Power Sources 135, 29–35 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.058

    Article  CAS  Google Scholar 

  106. Lee, S.J., Yu, T.L., Lin, H.L., et al.: Solution properties of nafion in methanol/water mixture solvent. Polymer 45, 2853–2862 (2004). https://doi.org/10.1016/j.polymer.2004.01.076

    Article  CAS  Google Scholar 

  107. Welch, C.F., Labouriau, A., Hjelm, R.P., et al.: Nafion in dilute solvent systems: dispersion or solution? ACS Macro Lett. 1, 1403–1407 (2012). https://doi.org/10.1021/mz3005204

    Article  CAS  Google Scholar 

  108. Kim, T.H., Yoo, J.H., Maiyalagan, T., et al.: Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Appl. Surf. Sci. 481, 777–784 (2019). https://doi.org/10.1016/j.apsusc.2019.03.113

    Article  CAS  Google Scholar 

  109. Ngo, T.T., Yu, T.L., Lin, H.L.: Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance. J. Power Sources 225, 293–303 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.055

    Article  CAS  Google Scholar 

  110. Sharma, R., Andersen, S.M.: Zoom in catalyst/ionomer interface in polymer electrolyte membrane fuel cell electrodes: impact of catalyst/ionomer dispersion media/solvent. ACS Appl. Mater. Interfaces. 10, 38125–38133 (2018). https://doi.org/10.1021/acsami.8b14622

    Article  CAS  PubMed  Google Scholar 

  111. Kusoglu, A., Weber, A.Z.: New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Y., Horan, J.L., Schlichting, G.J., et al.: A small-angle X-ray scattering study of the development of morphology in films formed from the 3 M perfluorinated sulfonic acid ionomer. Macromolecules 45, 7495–7503 (2012). https://doi.org/10.1021/ma300926e

    Article  CAS  Google Scholar 

  113. Kim, O.H., Oh, S.H., Ahn, C.Y., et al.: Enhanced performance of ionomer binder with shorter side-chains, higher dispersibility, and lower equivalent weight. Fuel Cells 18, 711–722 (2018). https://doi.org/10.1002/fuce.201800083

    Article  CAS  Google Scholar 

  114. Mauritz, K., Moore, R.: State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004)

    Article  CAS  Google Scholar 

  115. Karimi, M.B., Mohammadi, F., Hooshyari, K.: Recent approaches to improve Nafion performance for fuel cell applications: a review. Int. J. Hydrog. Energy 44, 28919–28938 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.096

    Article  CAS  Google Scholar 

  116. Lade, H., Kumar, V., Arthanareeswaran, G., et al.: Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: a review. Int. J. Hydrog. Energy 42, 1063–1074 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.038

    Article  CAS  Google Scholar 

  117. Xiao, L., Chen, X., Xu, J.J., et al.: Synthesis and properties of novel side-chain sulfonated poly(arylene ether sulfone)s for proton exchange membranes. J. Polym. Sci. Part A: Polym. Chem. 57, 2304–2313 (2019). https://doi.org/10.1002/pola.29533

  118. Oh, K.H., Kim, W.K., Choo, M.J., et al.: Partially perfluorinated hydrocarbon ionomer for cathode catalyst layer of polymer electrolyte membrane fuel cell. Electrochim. Acta 125, 314–319 (2014). https://doi.org/10.1016/j.electacta.2014.01.116

    Article  CAS  Google Scholar 

  119. Sahin, A., Tasdemir, H.M., Ar, İ.: Improved performance and durability of sulfonated polyether ether ketone/cerium phosphate composite membrane for proton exchange membrane fuel cells. Ionics 25, 5163–5175 (2019). https://doi.org/10.1007/s11581-019-03109-y

    Article  CAS  Google Scholar 

  120. Omata, T., Tanaka, M., Miyatake, K., et al.: Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers. ACS Appl. Mater. Interfaces. 4, 730–737 (2012). https://doi.org/10.1021/am201360j

    Article  CAS  PubMed  Google Scholar 

  121. Yao, Z.L., Zhang, Z.H., Hu, M., et al.: Perylene-based sulfonated aliphatic polyimides for fuel cell applications: performance enhancement by stacking of polymer chains. J. Membr. Sci. 547, 43–50 (2018). https://doi.org/10.1016/j.memsci.2017.10.032

    Article  CAS  Google Scholar 

  122. Peron, J., Shi, Z., Holdcroft, S.: Hydrocarbon proton conducting polymers for fuel cell catalyst layers. Energy Environ. Sci. 4, 1575–1591 (2011). https://doi.org/10.1039/C0EE00638F

    Article  CAS  Google Scholar 

  123. Aldebert, P., Dreyfus, B., Gebel, G., et al.: Rod like micellar structures in perfluorinated ionomer solutions. J. Phys. France 49, 2101–2109 (1988). https://doi.org/10.1051/jphys:0198800490120210100

    Article  CAS  Google Scholar 

  124. Aldebert, P., Dreyfus, B., Pineri, M.: Small-angle neutron scattering of perfluorosulfonated ionomers in solution. Macromolecules 19, 2651–2653 (1986). https://doi.org/10.1021/ma00164a035

    Article  CAS  Google Scholar 

  125. Szajdzinska-Pietek, E., Schlick, S., Plonka, A.: Self-assembling of perfluorinated polymeric surfactants in nonaqueous solvents. Electron spin resonance spectra of nitroxide spin probes in nafion solutions and swollen membranes. Langmuir 10, 2188–2196 (1994). https://doi.org/10.1021/la00019a026

  126. Szajdzinska-Pietek, E., Schlick, S., Plonka, A.: Self-assembling of perfluorinated polymeric surfactants in water. Electron-spin resonance spectra of nitroxide spin probes in nafion solutions and swollen membranes. Langmuir 10, 1101–1109 (1994). https://doi.org/10.1021/la00016a023

  127. Loppinet, B., Gebel, G., Williams, C.E.: Small-angle scattering study of perfluorosulfonated ionomer solutions. J. Phys. Chem. B 101, 1884–1892 (1997). https://doi.org/10.1021/jp9623047

    Article  CAS  Google Scholar 

  128. Xu, F., Zhang, H., Ilavsky, J., et al.: Investigation of a catalyst ink dispersion using both ultra-small-angle X-ray scattering and cryogenic TEM. Langmuir 26, 19199–19208 (2010). https://doi.org/10.1021/la1028228

    Article  CAS  PubMed  Google Scholar 

  129. Yamaguchi, M., Matsunaga, T., Amemiya, K., et al.: Dispersion of rod-like particles of nafion in salt-free water/1-propanol and water/ethanol solutions. J. Phys. Chem. B 118, 14922–14928 (2014). https://doi.org/10.1021/jp506814m

  130. Berlinger, S.A., McCloskey, B.D., Weber, A.Z.: Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation. J. Phys. Chem. B 122, 7790–7796 (2018). https://doi.org/10.1021/acs.jpcb.8b06493

    Article  CAS  PubMed  Google Scholar 

  131. Berlinger, S.A., McCloskey, B.D., Weber, A.Z.: Understanding binary interactions in fuel-cell catalyst-layer inks. ECS Trans. 80, 309–319 (2017). https://doi.org/10.1149/08008.0309ecst

    Article  CAS  Google Scholar 

  132. Yang, F., Xin, L., Uzunoglu, A., et al.: Investigation of the interaction between nafion ionomer and surface functionalized carbon black using both ultrasmall angle X-ray scattering and cryo-TEM. ACS Appl. Mater. Interfaces. 9, 6530–6538 (2017). https://doi.org/10.1021/acsami.6b12949

    Article  CAS  PubMed  Google Scholar 

  133. Ma, C.H., Yu, T.L., Lin, H.L., et al.: Morphology and properties of Nafion membranes prepared by solution casting. Polymer 50, 1764–1777 (2009). https://doi.org/10.1016/j.polymer.2009.01.060

    Article  CAS  Google Scholar 

  134. Lin, H.L., Yu, T.L., Huang, C.H., et al.: Morphology study of Nafion membranes prepared by solutions casting. J. Polym. Sci. B Polym. Phys. 43, 3044–3057 (2005). https://doi.org/10.1002/polb.20599

    Article  CAS  Google Scholar 

  135. Yeo, R.S.: Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane. Polymer 21, 432–435 (1980). https://doi.org/10.1016/0032-3861(80)90015-4

    Article  CAS  Google Scholar 

  136. Kim, Y.S., Welch, C.F., Hjelm, R.P., et al.: Origin of toughness in dispersion-cast nafion membranes. Macromolecules 48, 2161–2172 (2015). https://doi.org/10.1021/ma502538k

    Article  CAS  Google Scholar 

  137. Ishikawa, H., Sugawara, Y., Inoue, G., et al.: Effects of Pt and ionomer ratios on the structure of catalyst layer: a theoretical model for polymer electrolyte fuel cells. J. Power Sources 374, 196–204 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.026

    Article  CAS  Google Scholar 

  138. Doo, G., Lee, J.H., Yuk, S., et al.: Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Interfaces. 10, 17835–17841 (2018). https://doi.org/10.1021/acsami.8b01751

    Article  CAS  PubMed  Google Scholar 

  139. Morawietz, T., Handl, M., Oldani, C., et al.: Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Appl. Mater. Interfaces. 8, 27044–27054 (2016). https://doi.org/10.1021/acsami.6b07188

    Article  CAS  PubMed  Google Scholar 

  140. Uchida, M., Park, Y.C., Kakinuma, K., et al.: Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells. Phys. Chem. Chem. Phys. 15, 11236 (2013). https://doi.org/10.1039/c3cp51801a

    Article  CAS  PubMed  Google Scholar 

  141. Andersen, S.M., Grahl-Madsen, L.: Interface contribution to the electrode performance of proton exchange membrane fuel cells—impact of the ionomer. Int. J. Hydrog. Energy 41, 1892–1901 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.101

    Article  CAS  Google Scholar 

  142. Ott, S., Orfanidi, A., Schmies, H., et al.: Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0

    Article  CAS  PubMed  Google Scholar 

  143. Thoma, M., Lin, W., Hoffmann, E., et al.: Simple and reliable method for studying the adsorption behavior of aquivion ionomers on carbon black surfaces. Langmuir 34, 12324–12334 (2018). https://doi.org/10.1021/acs.langmuir.8b02726

    Article  CAS  PubMed  Google Scholar 

  144. Andersen, S.M.: Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures. Appl. Catal. B 181, 146–155 (2016). https://doi.org/10.1016/j.apcatb.2015.07.049

    Article  CAS  Google Scholar 

  145. Andersen, S.M., Borghei, M., Dhiman, R., et al.: Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies. Carbon 71, 218–228 (2014). https://doi.org/10.1016/j.carbon.2014.01.032

    Article  CAS  Google Scholar 

  146. Andersen, S.M., Borghei, M., Dhiman, R., et al.: Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. J. Phys. Chem. C 118, 10814–10823 (2014). https://doi.org/10.1021/jp501088d

    Article  CAS  Google Scholar 

  147. Koestner, R., Roiter, Y., Kozhinova, I., et al.: AFM imaging of adsorbed Nafion polymer on mica and graphite at molecular level. Langmuir 27, 10157–10166 (2011). https://doi.org/10.1021/la201283a

    Article  CAS  PubMed  Google Scholar 

  148. Koestner, R., Roiter, Y., Kozhinova, I., et al.: Effect of local charge distribution on graphite surface on nafion polymer adsorption as visualized at the molecular level. J. Phys. Chem. C 115, 16019–16026 (2011). https://doi.org/10.1021/jp203392m

    Article  CAS  Google Scholar 

  149. Kudo, K., Jinnouchi, R., Morimoto, Y.: Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016). https://doi.org/10.1016/j.electacta.2016.04.023

    Article  CAS  Google Scholar 

  150. Kodama, K., Jinnouchi, R., Suzuki, T., et al.: Increase in adsorptivity of sulfonate anions on Pt (111) surface with drying of ionomer. Electrochem. Commun. 36, 26–28 (2013). https://doi.org/10.1016/j.elecom.2013.09.005

    Article  CAS  Google Scholar 

  151. Subbaraman, R., Strmcnik, D., Paulikas, A.P., et al.: Oxygen reduction reaction at three-phase interfaces. ChemPhysChem 11, 2825–2833 (2010). https://doi.org/10.1002/cphc.201000190

    Article  CAS  PubMed  Google Scholar 

  152. Kodama, K., Motobayashi, K., Shinohara, A., et al.: Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8, 694–700 (2018). https://doi.org/10.1021/acscatal.7b03571

    Article  CAS  Google Scholar 

  153. Kusano, T., Hiroi, T., Amemiya, K., et al.: Structural evolution of a catalyst ink for fuel cells during the drying process investigated by CV-SANS. Polym. J. 47, 546–555 (2015). https://doi.org/10.1038/pj.2015.36

    Article  CAS  Google Scholar 

  154. Shibayama, M., Matsunaga, T., Kusano, T., et al.: SANS studies on catalyst ink of fuel cell. J. Appl. Polym. Sci. 131, 39842 (2014). https://doi.org/10.1002/app.39842

    Article  CAS  Google Scholar 

  155. Takahashi, S., Shimanuki, J., Mashio, T., et al.: Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy. Electrochim. Acta 224, 178–185 (2017). https://doi.org/10.1016/j.electacta.2016.12.068

    Article  CAS  Google Scholar 

  156. Yoshimune, W., Harada, M.: Effect of Pt loading on the adsorption of perfluoro-sulfonic acid ionomer in catalyst ink for polymer electrolyte fuel cells. Chem. Lett. 48, 487–490 (2019). https://doi.org/10.1246/cl.190017

    Article  CAS  Google Scholar 

  157. Takahashi, S., Mashio, T., Horibe, N., et al.: Analysis of the microstructure formation process and its influence on the performance of polymer electrolyte fuel-cell catalyst layers. ChemElectroChem 2, 1560–1567 (2015). https://doi.org/10.1002/celc.201500131

    Article  CAS  Google Scholar 

  158. Shimanuki, J., Takahashi, S., Tohma, H., et al.: Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM. Microscopy (Oxf) 66, 204–208 (2017). https://doi.org/10.1093/jmicro/dfx001

    Article  CAS  Google Scholar 

  159. Khan, Z.U., Kausar, A., Ullah, H.: a review on composite papers of graphene oxide, carbon nanotube, polymer/GO, and polymer/CNT: processing strategies, properties, and relevance. Polym. Plast. Technol. Eng. 55, 559–581 (2016). https://doi.org/10.1080/03602559.2015.1098693

    Article  CAS  Google Scholar 

  160. Long, C.M., Nascarella, M.A., Valberg, P.A.: Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut 181, 271–286 (2013). https://doi.org/10.1016/j.envpol.2013.06.009

  161. Soboleva, T., Zhao, X.S., Malek, K., et al.: On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl. Mater. Interfaces. 2, 375–384 (2010). https://doi.org/10.1021/am900600y

    Article  CAS  PubMed  Google Scholar 

  162. Lauterborn, W., Ohl, C.D.: Cavitation bubble dynamics. Ultrason. Sonochem. 4, 65–75 (1997). https://doi.org/10.1016/s1350-4177(97)00009-6

    Article  CAS  PubMed  Google Scholar 

  163. Pollet, B.G., Goh, J.T.E.: The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 128, 292–303 (2014). https://doi.org/10.1016/j.electacta.2013.09.160

    Article  CAS  Google Scholar 

  164. Pollet, B.G.: Let’s not ignore the ultrasonic effects on the preparation of fuel cell materials. Electrocatalysis 5, 330–343 (2014). https://doi.org/10.1007/s12678-014-0211-4

    Article  CAS  Google Scholar 

  165. Zhang, B., Chen, T.J.: Study of ultrasonic dispersion of graphene nanoplatelets. Materials 12, 1757 (2019). https://doi.org/10.3390/ma12111757

    Article  CAS  PubMed Central  Google Scholar 

  166. Wang, M., Park, J.H., Kabir, S., et al.: Impact of catalyst ink dispersing methodology on fuel cell performance using in situ X-ray scattering. ACS Appl. Energy Mater. 2, 6417–6427 (2019). https://doi.org/10.1021/acsaem.9b01037

    Article  CAS  Google Scholar 

  167. Adamski, M., Peressin, N., Holdcroft, S., et al.: Does power ultrasound affect Nafion® dispersions? Ultrason. Sonochem. 60, 104758 (2020). https://doi.org/10.1016/j.ultsonch.2019.104758

    Article  CAS  PubMed  Google Scholar 

  168. Tiwary, C.S., Verma, A., Biswas, K., et al.: Preparation of ultrafine CsCl crystallites by combined cryogenic and room temperature ball milling. Ceram. Int. 37, 3677–3686 (2011). https://doi.org/10.1016/j.ceramint.2011.06.029

    Article  CAS  Google Scholar 

  169. Shin, H., Lee, S., Suk Jung, H., et al.: Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram. Int. 39, 8963–8968 (2013). https://doi.org/10.1016/j.ceramint.2013.04.093

    Article  CAS  Google Scholar 

  170. Burmeister, C.F., Kwade, A.: Process engineering with planetary ball Mills. Chem. Soc. Rev. 42, 7660 (2013). https://doi.org/10.1039/c3cs35455e

    Article  CAS  PubMed  Google Scholar 

  171. Hashimasa, Y., Numata, T.: Comparison of test results on load cycle durability of polymer electrolyte fuel cell cathode catalysts. Int. J. Hydrog. Energy 40, 11543–11549 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.031

    Article  CAS  Google Scholar 

  172. Khandavalli, S., Park, J.H., Kariuki, N.N., et al.: Rheological investigation on the microstructure of fuel cell catalyst inks. ACS Appl. Mater. Interfaces. 10, 43610–43622 (2018). https://doi.org/10.1021/acsami.8b15039

    Article  CAS  PubMed  Google Scholar 

  173. Tamaki, T., Koshiishi, A., Sugawara, Y., et al.: Evaluation of performance and durability of platinum–iron–copper with L10 ordered face-centered tetragonal structure as cathode catalysts in polymer electrolyte fuel cells. J. Appl. Electrochem. 48, 773–782 (2018). https://doi.org/10.1007/s10800-018-1193-3

    Article  CAS  Google Scholar 

  174. Uemura, S., Kameya, Y., Iriguchi, N., et al.: Communication: investigation of catalyst ink degradation by X-ray CT. J. Electrochem. Soc. 165, F142–F144 (2018). https://doi.org/10.1149/2.0411803jes

    Article  CAS  Google Scholar 

  175. Uemura, S., Yoshida, T., Koga, M., et al.: Ink degradation and its effects on the crack formation of fuel cell catalyst layers. J. Electrochem. Soc. 166, F89–F92 (2019). https://doi.org/10.1149/2.0411902jes

    Article  CAS  Google Scholar 

  176. Fritz, G., Schadler, V., Willenbacher, N., et al.: Electrosteric stabilization of colloidal dispersions. Langmuir 18, 6381–6390 (2002). https://doi.org/10.1021/la015734j

    Article  CAS  Google Scholar 

  177. Zhang, H.N., Pan, J.J., He, X.C., et al.: Zeta potential of Nafion molecules in isopropanol–water mixture solvent. J. Appl. Polym. Sci. 107, 3306–3309 (2008). https://doi.org/10.1002/app.27473

    Article  CAS  Google Scholar 

  178. Hoffmann, E., Zhang, S., Thoma, M., et al.: Formulation of carbon black-ionomer dispersions for thin film formation in fuel cells. Particuology 44, 7–21 (2019). https://doi.org/10.1016/j.partic.2018.08.001

    Article  CAS  Google Scholar 

  179. Dixit, M., Hatzell, K.B.: Understanding binary interactions and aging effects in catalyst layer inks for controlled manufacturing. ECS Trans. 80, 301–307 (2017). https://doi.org/10.1149/08008.0301ecst

    Article  CAS  Google Scholar 

  180. Uemura, S., Kameya, Y., Iriguchi, N., et al.: Time lapse visualization of catalyst ink degradation by X-ray CT. ECS Trans. 80, 403–407 (2017). https://doi.org/10.1149/08008.0403ecst

    Article  CAS  Google Scholar 

  181. Kameya, Y., Iriguchi, N., Ohki, M., et al.: MRI and 1H/19F NMR investigation of dispersion state of PEFC catalyst ink. ECS Trans. 80, 819–827 (2017). https://doi.org/10.1149/08008.0819ecst

    Article  CAS  Google Scholar 

  182. Koga, M., Tokita, M., Masunaga, H., Hikima, T., Sugimori, H., Sasabe, T., Yoshida, T., Shinohara, K., Hirai, S.: Investigation of drying process of catalyst ink for polymer electrolyte fuel cells by grazing-incidence X-ray scattering. ECS Trans. 86 (2018). https://doi.org/10.1149/ma2018-02/41/1393

  183. Suzuki, T., Tsushima, S., Hirai, S.: Effects of Nafion® ionomer and carbon particles on structure formation in a proton-exchange membrane fuel cell catalyst layer fabricated by the decal-transfer method. Int. J. Hydrog. Energy 36, 12361–12369 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.090

    Article  CAS  Google Scholar 

  184. Inoue, G., Kawase, M.: Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J. Power Sources 327, 1–10 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.037

    Article  CAS  Google Scholar 

  185. Ohnishi, T., So, M., Takenaka, S., et al.: Performance of carbon-supported Pt nanoparticles covered by silica layers with low ionomer in polymer electrolyte fuel cells. ECS Trans. 86, 453–460 (2018). https://doi.org/10.1149/08613.0453ecst

    Article  CAS  Google Scholar 

  186. Zhao, J., Shahgaldi, S., Alaefour, I., et al.: Pore structure and effective diffusion coefficient of catalyzed electrodes in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 43, 3776–3785 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.019

    Article  CAS  Google Scholar 

  187. Inoue, G., Kawase, M.: Understanding formation mechanism of heterogeneous porous structure of catalyst layer in polymer electrolyte fuel cell. Int. J. Hydrog. Energy 41, 21352–21365 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.029

    Article  CAS  Google Scholar 

  188. Chisaka, M., Daiguji, H.: Effect of glycerol on micro/nano structures of catalyst layers in polymer electrolyte membrane fuel cells. Electrochim. Acta 51, 4828–4833 (2006). https://doi.org/10.1016/j.electacta.2006.01.018

    Article  CAS  Google Scholar 

  189. Jiang, J.K., Oberdörster, G., Biswas, P.: Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77–89 (2009). https://doi.org/10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  190. Xu, R.L., Wu, C.F., Xu, H.Y.: Particle size and zeta potential of carbon black in liquid media. Carbon 45, 2806–2809 (2007). https://doi.org/10.1016/j.carbon.2007.09.010

    Article  CAS  Google Scholar 

  191. Bevan, M.A., Prieve, D.C.: Direct measurement of retarded van der waals attraction. Langmuir 15, 7925–7936 (1999). https://doi.org/10.1021/la981381l

    Article  CAS  Google Scholar 

  192. Runkana, V., Somasundaran, P., Kapur, P.C.: A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 61, 182–191 (2006). https://doi.org/10.1016/j.ces.2005.01.046

    Article  CAS  Google Scholar 

  193. Liu, J., Cui, S., Keffer, D.J.: Molecular-level investigation of critical gap size between catalyst particles and electrolyte in hydrogen proton exchange membrane fuel cells. Fuel Cells 8, 422–428 (2008). https://doi.org/10.1002/fuce.200800001

    Article  CAS  Google Scholar 

  194. Balbuena, P.B., Lamas, E.J., Wang, Y.X.: Molecular modeling studies of polymer electrolytes for power sources. Electrochim. Acta 50, 3788–3795 (2005). https://doi.org/10.1016/j.electacta.2005.02.063

    Article  CAS  Google Scholar 

  195. Lamas, E.J., Balbuena, P.B.: Molecular dynamics studies of a model polymer-catalyst-carbon interface. Electrochim. Acta 51, 5904–5911 (2006). https://doi.org/10.1016/j.electacta.2006.03.033

    Article  CAS  Google Scholar 

  196. Damasceno Borges, D., Franco, A.A., Malek, K., et al.: Inhomogeneous transport in model hydrated polymer electrolyte supported ultrathin films. ACS Nano 7, 6767–6773 (2013). https://doi.org/10.1021/nn401624p

    Article  CAS  PubMed  Google Scholar 

  197. Sugaya, Y., Tokumasu, T.: Molecular dynamics study of oxygen permeation of ionomer of hydrocarbon. ECS Trans. 58, 1165–1174 (2013). https://doi.org/10.1149/05801.1165ecst

    Article  CAS  Google Scholar 

  198. Jinnouchi, R., Kudo, K., Kitano, N., et al.: Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031

    Article  CAS  Google Scholar 

  199. Tarokh, A., Karan, K., Ponnurangam, S.: Atomistic MD study of nafion dispersions: role of solvent and counterion in the aggregate structure, ionic clustering, and acid dissociation. Macromolecules 53, 288–301 (2020). https://doi.org/10.1021/acs.macromol.9b01663

    Article  CAS  Google Scholar 

  200. Malek, K., Mashio, T., Eikerling, M.: Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach. Electrocatalysis 2, 141–157 (2011). https://doi.org/10.1007/s12678-011-0047-0

    Article  CAS  Google Scholar 

  201. Malek, K., Eikerling, M., Wang, Q.P., et al.: Self-organization in catalyst layers of polymer electrolyte fuel cells. J. Phys. Chem. C 111, 13627–13634 (2007). https://doi.org/10.1021/jp072692k

    Article  CAS  Google Scholar 

  202. Xiao, Y., Dou, M.L., Yuan, J.L., et al.: Fabrication process simulation of a PEM fuel cell catalyst layer and its microscopic structure characteristics. J. Electrochem. Soc. 159, B308–B314 (2012). https://doi.org/10.1149/2.064203jes

    Article  CAS  Google Scholar 

  203. Lee, J.H., Doo, G., Kwon, S.H., et al.: Dispersion-solvent control of ionomer aggregation in a polymer electrolyte membrane fuel cell. Sci. Rep. 8, 10739 (2018). https://doi.org/10.1038/s41598-018-28779-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Forouzan, M.M., Chao, C.W., Bustamante, D., et al.: Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties. J. Power Sources 312, 172–183 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.014

    Article  CAS  Google Scholar 

  205. Munekata, T., Suzuki, T., Yamakawa, S., et al.: Effects of viscosity, surface tension, and evaporation rate of solvent on dry colloidal structures: a lattice Boltzmann study. Phys. Rev. E 88, 052314 (2013). https://doi.org/10.1103/physreve.88.052314

    Article  Google Scholar 

  206. Akhgar, A., Khalili, B., Moa, B., et al.: Lattice–Boltzmann simulation of multi-phase phenomena related to fuel cells. In: Abstracts of the International Conference on Numerical Analysis and Applied Mathematics, Rhodes, Greece, 19–25 September 2016. https://doi.org/10.1063/1.4992192

  207. Song, S.Y., Zhou, X., Li, L., et al.: Numerical simulation and experimental validation of SiC nanoparticle distribution in magnesium melts during ultrasonic cavitation based processing of magnesium matrix nanocomposites. Ultrason. Sonochem. 24, 43–54 (2015). https://doi.org/10.1016/j.ultsonch.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  208. Choi, Y.J., Djilali, N.: Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow. Phys. Fluids 28, 013304 (2016). https://doi.org/10.1063/1.4939501

    Article  CAS  Google Scholar 

  209. Bhattacharjee, S.: DLS and zeta potential: What they are and what they are not? J. Control Release 235, 337–351 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  210. Urban, C., Schurtenberger, P.: Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J. Colloid Interface Sci. 207, 150–158 (1998). https://doi.org/10.1006/jcis.1998.5769

    Article  CAS  PubMed  Google Scholar 

  211. Hassan, P.A., Rana, S., Verma, G.: Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31, 3–12 (2015). https://doi.org/10.1021/la501789z

    Article  CAS  PubMed  Google Scholar 

  212. Kaler, E.W.: Small-angle scattering from colloidal dispersions. J. Appl. Crystallogr. 21, 729–736 (1988). https://doi.org/10.1107/s0021889888005230

    Article  CAS  Google Scholar 

  213. Ren, Y., Zuo, X.B.: Synchrotron X-ray and neutron diffraction, total scattering, and small-angle scattering techniques for rechargeable battery research. Small Methods 2, 1800064 (2018). https://doi.org/10.1002/smtd.201800064

    Article  CAS  Google Scholar 

  214. Fan, Y.X., Wang, Y.L.: Applications of small-angle X-ray scattering/small-angle neutron scattering and cryogenic transmission electron microscopy to understand self-assembly of surfactants. Curr. Opin. Colloid Interface Sci. 42, 1–16 (2019). https://doi.org/10.1016/j.cocis.2019.02.011

    Article  CAS  Google Scholar 

  215. Kuntsche, J., Horst, J.C., Bunjes, H.: Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 417, 120–137 (2011). https://doi.org/10.1016/j.ijpharm.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  216. Suzuki, T., Okada, S., Tsushima, S.: Characterization of catalyst inks by rheology and microscopic particle properties. ECS Trans. 86, 193–198 (2018). https://doi.org/10.1149/08613.0193ecst

    Article  CAS  Google Scholar 

  217. Bonifácio, R.N., Paschoal, J.O.A., Linardi, M., et al.: Catalyst layer optimization by surface tension control during ink formulation of membrane electrode assemblies in proton exchange membrane fuel cell. J. Power Sources 196, 4680–4685 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.010

    Article  CAS  Google Scholar 

  218. Deiner, L.J., Reitz, T.L.: Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage. Adv. Eng. Mater. 19, 1600878 (2017). https://doi.org/10.1002/adem.201600878

    Article  CAS  Google Scholar 

  219. Kuroki, H., Onishi, K., Asami, K., et al.: Catalyst slurry preparation using a hydrodynamic cavitation dispersion method for polymer electrolyte fuel cells. Ind. Eng. Chem. Res. 58, 19545–19550 (2019). https://doi.org/10.1021/acs.iecr.9b02111

    Article  CAS  Google Scholar 

  220. Glüsen, A., Müller, M., Stolten, D.: Slot-Die coating: a new preparation method for direct methanol fuel cells catalyst layers. J. Fuel Cell Sci. Technol. 10, 044503 (2013). https://doi.org/10.1115/1.4024607

    Article  CAS  Google Scholar 

  221. de las Heras, A., Vivas, F.J., Segura, F., et al.: From the cell to the stack. A chronological walk through the techniques to manufacture the PEFCs core. Renew. Sustain. Energy Rev. 96, 29–45 (2018). https://doi.org/10.1016/j.rser.2018.07.036

  222. Somalu, M.R., Muchtar, A., Daud, W.R.W., et al.: Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renew. Sustain. Energy Rev. 75, 426–439 (2017). https://doi.org/10.1016/j.rser.2016.11.008

    Article  CAS  Google Scholar 

  223. Somalu, M.R., Yufit, V., Brandon, N.P.: The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells. Int. J. Hydrog. Energy 38, 9500–9510 (2013). https://doi.org/10.1016/j.ijhydene.2012.06.061

    Article  CAS  Google Scholar 

  224. Somalu, M.R., Muchtar, A., Baboli, M.G., et al.: Understanding the relationship between ink rheology and film properties for screen-printed nickel/scandia-stabilized-zirconia anodes. ECS Trans. 57, 1321–1330 (2013). https://doi.org/10.1149/05701.1321ecst

    Article  CAS  Google Scholar 

  225. Khandavalli, S., Park, J.H., Kariuki, N.N., et al.: Investigation of the microstructure and rheology of iridium oxide catalyst inks for low-temperature polymer electrolyte membrane water electrolyzers. ACS Appl. Mater. Interfaces. 11, 45068–45079 (2019). https://doi.org/10.1021/acsami.9b14415

    Article  CAS  PubMed  Google Scholar 

  226. Zhao, J., Li, X.G., Liu, Z.S.: The effect of ink dilution and evaporation on the microstructures of catalyst layers in polymer electrolyte membrane fuel cells. Int. J. Energy Res. 43, 6799–6811 (2019). https://doi.org/10.1002/er.4671

    Article  CAS  Google Scholar 

  227. Su, H.N., Jao, T.C., Barron, O., et al.: Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique. J. Power Sources 267, 155–159 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.086

    Article  CAS  Google Scholar 

  228. Navaei Alvar, E., Zhou, B., Eichhorn, S.H.: Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell. Int. J. Energy Res. 41, 1626–1641 (2017). https://doi.org/10.1002/er.3746

    Article  CAS  Google Scholar 

  229. Chan, S., Jankovic, J., Susac, D., et al.: Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: fabrication and optimization. J. Mater. Sci. 53, 11633–11647 (2018). https://doi.org/10.1007/s10853-018-2411-4

    Article  CAS  Google Scholar 

  230. Si, D., Zhang, S., Huang, J., et al.: Electrochemical characterization of pre-conditioning process of electrospun nanofiber electrodes in polymer electrolyte fuel cells. Fuel Cells 18, 576–585 (2018). https://doi.org/10.1002/fuce.201700209

    Article  CAS  Google Scholar 

  231. Shukla, S., Stanier, D., Saha, M.S., et al.: Analysis of inkjet printed PEFC electrodes with varying platinum loading. J. Electrochem. Soc. 163, F677–F687 (2016). https://doi.org/10.1149/2.1111607jes

    Article  CAS  Google Scholar 

  232. Daud, W.R.W., Mohamad, A.B., Kadhum, A.A.H., et al.: Performance optimisation of PEM fuel cell during MEA fabrication. Energy Convers. Manag. 45, 3239–3249 (2004). https://doi.org/10.1016/j.enconman.2004.01.011

    Article  CAS  Google Scholar 

  233. Bredol, M., Szydło, A., Radev, I., et al.: How the colloid chemistry of precursor electrocatalyst dispersions is related to the polymer electrolyte membrane fuel cell performance. J. Power Sources 402, 15–23 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.005

    Article  CAS  Google Scholar 

  234. Chingthamai, N., Sombatmankhong, K., Laoonual, Y.: Experimental investigation of electrospray coating technique for electrode fabrication in PEMFCs. Energy Proc. 105, 1806–1812 (2017). https://doi.org/10.1016/j.egypro.2017.03.523

    Article  CAS  Google Scholar 

  235. Millington, B., Whipple, V., Pollet, B.G.: A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. J. Power Sources 196, 8500–8508 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.024

    Article  CAS  Google Scholar 

  236. Bender, G., Zawodzinski, T.A., Saab, A.P.: Fabrication of high precision PEFC membrane electrode assemblies. J. Power Sources 124, 114–117 (2003). https://doi.org/10.1016/S0378-7753(03)00735-3

    Article  CAS  Google Scholar 

  237. Engle, R.: Maximizing the use of platinum catalyst by ultrasonic spray application. J. Fuel Cell Sci. Technol. 9, 014501 (2012). https://doi.org/10.1115/1.4004462

    Article  CAS  Google Scholar 

  238. Huang, X.Y., Rigdon, W.A., Neutzler, J., et al.: High performance membrane electrode assembly fabricated by ultrasonic spray technique. ECS Trans. 41, 901–907 (2019). https://doi.org/10.1149/1.3635624

    Article  Google Scholar 

  239. Huang, T.H., Shen, H.L., Jao, T.C., et al.: Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine. Int. J. Hydrog. Energy 37, 13872–13879 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.108

    Article  CAS  Google Scholar 

  240. Jao, T.C., Jung, G.B., Shen, H.L., et al.: Ultrasonic spray coating for proton exchange membrane fuel cell. Open J. Acoust. 3, 33–37 (2013). https://doi.org/10.4236/oja.2013.33a006

    Article  Google Scholar 

  241. Chaparro, A.M., Folgado, M.A., Ferreira-Aparicio, P., et al.: Properties of catalyst layers for PEMFC electrodes prepared by electrospray deposition. J. Electrochem. Soc. 157, B993–B999 (2010). https://doi.org/10.1149/1.3425740

    Article  CAS  Google Scholar 

  242. Wang, J., Xu, H., Huo, Y., et al.: Progress of electrospray and electrospinning in energy applications. Nanotechnology 31, 132001 (2020). https://doi.org/10.1088/1361-6528/ab52bb

    Article  CAS  PubMed  Google Scholar 

  243. Soares, R.M.D., Siqueira, N.M., Prabhakaram, M.P., et al.: Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater. Sci. Eng. C 92, 969–982 (2018). https://doi.org/10.1016/j.msec.2018.08.004

  244. Levitt, A.S., Vallett, R., Dion, G., et al.: Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J. Appl. Polym. Sci. 135, 46404 (2018). https://doi.org/10.1002/app.46404

    Article  CAS  Google Scholar 

  245. Son, W.K., Youk, J.H., Lee, T.S., et al.: The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45, 2959–2966 (2004). https://doi.org/10.1016/j.polymer.2004.03.006

    Article  CAS  Google Scholar 

  246. Baturina, O.A., Wnek, G.E.: Characterization of proton exchange membrane fuel cells with catalyst layers obtained by electrospraying. Electrochem. Solid-State Lett. 8, A267 (2005). https://doi.org/10.1149/1.1895267

    Article  CAS  Google Scholar 

  247. Benítez, R., Soler, J., Daza, L.: Novel method for preparation of PEMFC electrodes by the electrospray technique. J. Power Sources 151, 108–113 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.047

    Article  CAS  Google Scholar 

  248. Chaparro, A.M., Benítez, R., Gubler, L., et al.: Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method. J. Power Sources 169, 77–84 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.044

    Article  CAS  Google Scholar 

  249. Chaparro, A.M., Gallardo, B., Folgado, M.A., et al.: PEMFC electrode preparation by electrospray: optimization of catalyst load and ionomer content. Catal. Today 143, 237–241 (2009). https://doi.org/10.1016/j.cattod.2008.12.003

    Article  CAS  Google Scholar 

  250. Úbeda, D., Cañizares, P., Ferreira-Aparicio, P., et al.: Life test of a high temperature PEM fuel cell prepared by electrospray. Int. J. Hydrog. Energy 41, 20294–20304 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.109

    Article  CAS  Google Scholar 

  251. Yoo, J.H., Choi, B.H., Koh, B.S., et al.: Fabrication of practical PEMFC electrode with ultralow mass loading of platinum via electro-spray deposition technique. J. Ceram. Process. Res. 18, 203–206 (2017)

    Google Scholar 

  252. Waldrop, K., Wycisk, R., Pintauro, P.N.: Application of electrospinning for the fabrication of proton-exchange membrane fuel cell electrodes. Curr. Opin. Electrochem. 21, 257–264 (2020). https://doi.org/10.1016/j.coelec.2020.03.007

    Article  CAS  Google Scholar 

  253. Park, J.H., Ju, Y.W., Park, S.H., et al.: Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC. J. Appl. Electrochem. 39, 1229–1236 (2009). https://doi.org/10.1007/s10800-009-9787-4

    Article  CAS  Google Scholar 

  254. Chan, S., Jankovic, J., Susac, D., et al.: Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J. Power Sources 392, 239–250 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.001

    Article  CAS  Google Scholar 

  255. Wang, L.B., Chen, S., Shu, T., et al.: Functional inks for printable energy storage applications based on 2 D materials. Chemsuschem 13, 1330–1353 (2020). https://doi.org/10.1002/cssc.201902019

    Article  CAS  PubMed  Google Scholar 

  256. Santangelo, P., Cannio, M., Romagnoli, M.: Review of catalyst-deposition techniques for PEMFC electrodes. Techn. Italian J. Eng. Sci. 63, 65–72 (2019). https://doi.org/10.18280/ti-ijes.630109

  257. Fromm, J.E.: Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322–333 (1984). https://doi.org/10.1147/rd.283.0322

    Article  Google Scholar 

  258. Towne, S., Viswanathan, V., Holbery, J., et al.: Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology. J. Power Sources 171, 575–584 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.017

    Article  CAS  Google Scholar 

  259. Taylor, A.D., Kim, E.Y., Humes, V.P., et al.: Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power Sources 171, 101–106 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.024

    Article  CAS  Google Scholar 

  260. Saha, M.S., Paul, D., Malevich, D., et al.: Preparation of ultra-thin catalyst layers by piezo-electric printer for PEMFCs applications. ECS Trans. 25, 2049–2059 (2019). https://doi.org/10.1149/1.3210761

    Article  Google Scholar 

  261. Malevich, D., Saha, M.S., Halliop, E., et al.: Performance characteristics of PEFCs with patterned electrodes prepared by piezo-electric printing. ECS Trans. 50, 423–427 (2013). https://doi.org/10.1149/05002.0423ecst

    Article  Google Scholar 

  262. Shukla, S., Domican, K., Secanell, M.: Effect of electrode patterning on PEM fuel cell performance using ink-jet printing method. ECS Trans. 64, 341–352 (2014). https://doi.org/10.1149/06403.0341ecst

    Article  CAS  Google Scholar 

  263. Yazdanpour, M., Esmaeilifar, A., Rowshanzamir, S.: Effects of hot pressing conditions on the performance of Nafion membranes coated by ink-jet printing of Pt/MWCNTs electrocatalyst for PEMFCs. Int. J. Hydrog. Energy 37, 11290–11298 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.139

    Article  CAS  Google Scholar 

  264. Saha, M.S., Tam, M., Berejnov, V., et al.: Characterization and performance of catalyst layers prepared by inkjet printing technology. ECS Trans. 58, 797–806 (2013). https://doi.org/10.1149/05801.0797ecst

    Article  CAS  Google Scholar 

  265. Shukla, S., Domican, K., Karan, K., et al.: Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim. Acta 156, 289–300 (2015). https://doi.org/10.1016/j.electacta.2015.01.028

    Article  CAS  Google Scholar 

  266. Shukla, S., Domican, K., Secanell, M.: Analysis of kinetic parameters and effect of Pt loading on cell performance of PEFC electrodes prepared by inkjet printing. ECS Trans. 69, 761–772 (2015). https://doi.org/10.1149/06917.0761ecst

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (No. 21676204) and the Program of Ministry of Science and Technology of China (No. 2018YFB0106503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Li or Pingwen Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Pan, F., Chen, W. et al. The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review. Electrochem. Energ. Rev. 4, 67–100 (2021). https://doi.org/10.1007/s41918-020-00083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00083-2

Keywords

Navigation