Skip to main content

Advertisement

Log in

Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Due to the large reserves, low cost, high security and high energy density, rechargeable multivalent batteries have attracted extensive research enthusiasm for a long time. Multivalent batteries are also supposed as the potential candidates to Li-ion batteries in portable electronic devices and large-scale energy storage units. Unfortunately, most commercial cathode materials in Li-ion batteries cannot be applied in multivalent batteries because of the intensive polarization problem of multivalent intercalated ions (Mg2+, Zn2+, Al3+). Choosing and synthesizing the appropriate cathode materials are the main issues in overcoming the intensive polarization problem. Vanadium-based materials often possess many kinds of oxidation states because of the mutable vanadium element, which can facilitate achieving local electroneutrality and relieve the polarization problem of multivalent ions. In this review, we summarize the researches about the vanadium-based cathode materials for multivalent batteries and highlight the intercalation mechanism of multivalent ions to vanadium-based materials. In addition, different kinds of optimizing strategies are extracted from the literatures. On the basis of our review, progresses and future challenges of vanadium-based cathode materials in rechargeable multivalent batteries are more explicit.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. Andre, D., Kim, S.J., Lamp, P., et al.: Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015)

    Article  CAS  Google Scholar 

  3. Erickson, E.M., Ghanty, C., Aurbach, D.: New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 5, 3313–3324 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Mai, L., Yan, M., Zhao, Y.: Track batteries degrading in real time. Nature 546, 469–470 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015)

    Article  Google Scholar 

  6. Sakti, A., Michalek, J.J., Fuchs, E.R.H., et al.: A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sources 273, 966–980 (2015)

    Article  CAS  Google Scholar 

  7. Whittingham, M.S.: Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Augustyn, V., Come, J., Lowe, M.A., et al.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  11. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    Article  CAS  Google Scholar 

  12. Ruth, M.F., Zinaman, O.R., Antkowiak, M., et al.: Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs. Energy Convers. Manag. 78, 684–694 (2014)

    Article  Google Scholar 

  13. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  14. Heller, A.: Chemical engineering challenges and investment opportunities in sustainable energy. ChemSusChem 1, 651–652 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Pudukudy, M., Yaakob, Z., Mohammad, M., et al.: Renewable hydrogen economy in Asia—opportunities and challenges: an overview. Renew. Sustain. Energy Rev. 30, 743–757 (2014)

    Article  Google Scholar 

  16. Shafiei, E., Davidsdottir, B., Leaver, J., et al.: Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system. Energy 83, 614–627 (2015)

    Article  CAS  Google Scholar 

  17. Abruna, H.D., Kiya, Y., Henderson, J.C.: Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008)

    Article  CAS  Google Scholar 

  18. Crowther, O., West, A.C.: Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008)

    Article  CAS  Google Scholar 

  19. Zhamu, A., Chen, G., Liu, C., et al.: Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012)

    Article  CAS  Google Scholar 

  20. Crabtree, G.: The joint center for energy storage research: a new paradigm for battery research and development. In: Physics of Sustainable Energy III (PSE III): Using Energy Efficiently and Producing It Renewably, 3rd Physics of Sustainable Energy (PSE) Conference, Berkeley, March 2014. AIP Conference Proceedings, vol. 1652, pp. 112–128. American Institute of Physics, Melville (2015)

  21. Berg, E.J., Villevieille, C., Streich, D., et al.: Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015)

    Article  CAS  Google Scholar 

  22. Eroglu, D., Ha, S., Gallagher, K.G.: Fraction of the theoretical specific energy achieved on pack level for hypothetical battery chemistries. J. Power Sources 267, 14–19 (2014)

    Article  CAS  Google Scholar 

  23. Gallagher, K.G., Goebel, S., Greszler, T., et al.: Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014)

    Article  CAS  Google Scholar 

  24. Gallagher, K.G., Nelson, P.A., Dees, D.W.: Simplified calculation of the area specific impedance for battery design. J. Power Sources 196, 2289–2297 (2011)

    Article  CAS  Google Scholar 

  25. Gallagher, K.G., Trask, S.E., Bauer, C., et al.: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163, A138–A149 (2016)

    Article  CAS  Google Scholar 

  26. Lu, X., Kirby, B.W., Xu, W., et al.: Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2012)

    Article  Google Scholar 

  27. Lu, X., Lemmon, J.P., Kim, J.Y., et al.: High energy density Na–S/NiCl2 hybrid battery. J. Power Sources 224, 312–316 (2013)

    Article  CAS  Google Scholar 

  28. Manwell, J.F., Mcgowan, J.G.: Lead acid battery storage model for hybrid energy systems. Sol. Energy 50, 399–405 (1993)

    Article  CAS  Google Scholar 

  29. Abruna, H.D., Goodenough, J.B., Buchanan, M.V.: ANYL 28-Summary overview of basic research needs for electrical energy storage. In: Abstracts of Papers of the American Chemical Society, vol. 234, 28-ANYL. American Chemical Society, Washington, DC (2007)

  30. Iwase, S., Minato, T.: Lead acid battery, has container, cover with exhaust port and projection disposed on peripheral portion of exhaust port that is formed in upper or side surface of cover. US Patent 2003049521-A1, 13 Mar 2003

  31. Saiju, R., Heier, S.: Performance analysis of lead acid battery model for hybrid power system. In: 2008 IEEE/PES Transmission and Distribution Conference & Exposition, Chicago, April 2008. pp. 404-409. IEEE, Piscataway (2008)

  32. Nogueira, C.A., Delmas, F.: New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction. Hydrometallurgy 52, 267–287 (1999)

    Article  CAS  Google Scholar 

  33. Reddy, B.R., Priya, D.N., Rao, S.V., et al.: Solvent extraction and separation of Cd(II), Ni(II) and Co(II) from chloride leach liquors of spent Ni–Cd batteries using commercial organo-phosphorus extractants. Hydrometallurgy 77, 253–261 (2005)

    Article  CAS  Google Scholar 

  34. Sun, B., Skyllas-Kazacos, M.: Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta 37, 1253–1260 (1992)

    Article  CAS  Google Scholar 

  35. Liu, Q.H., Grim, G.M., Papandrew, A.B., et al.: High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection. J. Electrochem. Soc. 159, A1246–A1252 (2012)

    Article  CAS  Google Scholar 

  36. Sun, B., Skyllas-Kazacos, M.: Chemical modification of graphite electrode materials for vanadium redox flow battery application. Part II. Acid treatments. Electrochim. Acta. 37, 2459–2465 (1992)

    Article  Google Scholar 

  37. Jian, Z., Han, W., Liang, Y., et al.: Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2, 20231–20236 (2014)

    Article  CAS  Google Scholar 

  38. Song, W., Ji, X., Pan, C., et al.: A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys. Chem. Chem. Phys. 15, 14357–14363 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Song, W., Ji, X., Yao, Y., et al.: A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Phys. Chem. Chem. Phys. 16, 3055–3061 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Zhang, J.G., Yang, Z., et al.: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929–946 (2013)

    Article  CAS  Google Scholar 

  41. Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., et al.: Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157, A536–A543 (2010)

    Article  CAS  Google Scholar 

  42. Yao, Y., Mcdowell, M.T., Ryu, I., et al.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Fergus, J.W.: Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195, 939–954 (2010)

    Article  CAS  Google Scholar 

  44. He, C., Wu, S., Zhao, N., et al.: Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7, 4459–4469 (2013)

    Article  CAS  Google Scholar 

  45. Canepa, P., Gautam, G.S., Hannah, D.C., et al.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. Massé, R.C., Uchaker, E., Cao, G.: Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 58, 715–766 (2015)

    Article  CAS  Google Scholar 

  47. Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem. Mater. 22, 860–868 (2010)

    Article  CAS  Google Scholar 

  48. Saha, P., Datta, M.K., Velikokhatnyi, O.I., et al.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater Sci. 66, 1–86 (2014)

    Article  CAS  Google Scholar 

  49. Elia, G.A., Marquardt, K., Hoeppner, K., et al.: An overview and future perspectives of aluminum batteries. Adv. Mater. 28, 7564–7579 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Pan, H.L., Shao, Y.Y., Yan, P.F., et al.: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016)

    Article  CAS  Google Scholar 

  51. Gershinsky, G., Yoo, H.D., Gofer, Y., et al.: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964–10972 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. Aurbach, D., Weissman, I., Gofer, Y., et al.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003)

    Article  CAS  PubMed  Google Scholar 

  53. Brissot, C., Rosso, M., Chazalviel, J.N., et al.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925–929 (1999)

    Article  Google Scholar 

  54. Shterenberg, I., Salama, M., Gofer, Y., et al.: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453–460 (2014)

    Article  CAS  Google Scholar 

  55. Yoo, H.D., Shterenberg, I., Gofer, Y., et al.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013)

    Article  CAS  Google Scholar 

  56. Besenhard, J.O., Winter, M.: Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3, 155–159 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. Cheng, Y., Liu, T., Shao, Y., et al.: Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J. Mater. Chem. A 2, 2473–2477 (2014)

    Article  CAS  Google Scholar 

  58. Gregory, T.D., Hoffman, R.J., Winterton, R.C.: Nonaqueous electrochemistry of magnesium; applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990)

    Article  CAS  Google Scholar 

  59. Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)

    Article  CAS  Google Scholar 

  60. Gershinsky, G., Haik, O., Salitra, G., et al.: Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance. J. Solid State Chem. 188, 50–58 (2012)

    Article  CAS  Google Scholar 

  61. Levi, E., Mitelman, A., Isnard, O., et al.: Phase diagram of Mg insertion into Chevrel phases, Mg x Mo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. Inorg. Chem. 47, 1975–1983 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. Levi, M.D., Lancri, E., Levi, E., et al.: The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ion. 176, 1695–1699 (2005)

    Article  CAS  Google Scholar 

  63. Mitelman, A., Levi, E., Lancry, E., et al.: On the Mg trapping mechanism in electrodes comprising Chevrel phases. ECS Trans. 3, 109–115 (2007)

    Article  CAS  Google Scholar 

  64. Mitelman, A., Levi, M.D., Lancry, E., et al.: New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in Cu y Mo6S8 compounds. Chem. Commun. 41, 4212–4214 (2007)

    Article  CAS  Google Scholar 

  65. Suresh, G.S., Levi, M.D., Aurbach, D.: Effect of chalcogen substitution in mixed Mo6S8−nSe n (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochim. Acta 53, 3889–3896 (2008)

    Article  CAS  Google Scholar 

  66. Tao, Z.L., Xu, L.N., Gou, X.L., et al.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 18, 2080–2081 (2004)

    Article  CAS  Google Scholar 

  67. Arthur, T.S., Zhang, R., Ling, C., et al.: Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. ACS Appl. Mater. Interfaces 6, 7004–7008 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. Huang, Z.D., Masese, T., Orikasa, Y., et al.: MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A 2, 11578–11582 (2014)

    Article  CAS  Google Scholar 

  69. Ichitsubo, T., Adachi, T., Yagi, S., et al.: Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 21, 11764–11772 (2011)

    Article  CAS  Google Scholar 

  70. Kim, C., Phillips, P.J., Key, B., et al.: Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv. Mater. 27, 3377–3384 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Ling, C., Zhang, R., Arthur, T.S., et al.: How general is the conversion reaction in Mg battery cathode: a case study of the magnesiation of α-MnO2. Chem. Mater. 27, 5799–5807 (2015)

    Article  CAS  Google Scholar 

  72. Muldoon, J., Bucur, C.B., Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. Orikasa, Y., Masese, T., Koyama, Y., et al.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, R.Y., Wessells, C.D., Huggins, R.A., et al.: Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, R., Mizuno, F., Ling, C.: Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. Chem. Commun. 51, 1108–1111 (2015)

    Article  CAS  Google Scholar 

  76. Zheng, Y., Nuli, Y., Chen, Q., et al.: Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochim. Acta 66, 75–81 (2012)

    Article  CAS  Google Scholar 

  77. Aurbach, D., Gizbar, H., Schechter, A., et al.: Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149, A115–A121 (2002)

    Article  CAS  Google Scholar 

  78. Xu, C., Li, B., Du, H., et al.: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012)

    Article  CAS  Google Scholar 

  79. Mclarnon, F.R., Cairns, E.J.: The secondary alkaline zinc electrode. J. Electrochem. Soc. 138, 645–664 (1991)

    Article  CAS  Google Scholar 

  80. Lee, B., Lee, H.R., Kim, H., et al.: Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015)

    Article  CAS  Google Scholar 

  81. Alfaruqi, M.H., Mathew, V., Gim, J., et al.: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015)

    Article  CAS  Google Scholar 

  82. Hertzberg, B.J., Huang, A., Hsieh, A., et al.: Effect of multiple cation electrolyte mixtures on rechargeable Zn–MnO2 alkaline battery. Chem. Mater. 28, 4536–4545 (2016)

    Article  CAS  Google Scholar 

  83. Zhang, N., Cheng, F., Liu, J., et al.: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, L., Chen, L., Zhou, X., et al.: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy. Mater. 5, 1400930 (2015)

  85. Trócoli, R., La Mantia, F.: An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. Jayaprakash, N., Das, S.K., Archer, L.A.: The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612 (2011)

    Article  CAS  Google Scholar 

  87. Li, Q., Bjerrum, N.J.: Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002)

    Article  CAS  Google Scholar 

  88. Zafar, Z.A., Imtiaz, S., Razaq, R., et al.: Cathode materials for rechargeable aluminum batteries: current status and progress. J. Mater. Chem. A 5, 5646–5660 (2017)

    Article  CAS  Google Scholar 

  89. He, Y.J., Peng, J.F., Chu, W., et al.: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A. 2, 1721–1731 (2014)

    Article  CAS  Google Scholar 

  90. Lin, M.C., Gong, M., Lu, B., et al.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015)

    Article  CAS  Google Scholar 

  91. Jung, S.C., Kang, Y.-J., Yoo, D.-J., et al.: Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J. Phys. Chem. C 120, 13384–13389 (2016)

    Article  CAS  Google Scholar 

  92. Chen, H., Guo, F., Liu, Y., et al.: A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29, 1605958 (2017)

  93. Takami, N., Koura, N.: Electrochemical behavior of FeS2 cathodes for aluminum secondary cells around 100 °C. J. Electrochem. Soc. 140, 928–932 (1993)

    Article  CAS  Google Scholar 

  94. Wang, S., Yu, Z., Tu, J., et al.: A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene. Adv. Energy Mater. 6, 1600137 (2016)

  95. Wang, S., Jiao, S., Wang, J., et al.: High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11, 469–477 (2017)

    Article  CAS  PubMed  Google Scholar 

  96. Donahue, F.M., Mancini, S.E., Simonsen, L.: Secondary aluminium-iron (III) chloride batteries with a low temperature molten salt electrolyte. J. Appl. Electrochem. 22, 230–234 (1992)

    Article  CAS  Google Scholar 

  97. Zhao, Y., Han, C., Yang, J., et al.: Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett. 15, 2180–2185 (2015)

    Article  CAS  PubMed  Google Scholar 

  98. An, Q., Wei, Q., Zhang, P., et al.: Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 11, 2654–2660 (2015)

    Article  CAS  PubMed  Google Scholar 

  99. An, Q., Zhang, P., Wei, Q., et al.: Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A. 2, 3297–3302 (2014)

    Article  CAS  Google Scholar 

  100. Huie, M.M., Bock, D.C., Takeuchi, E.S., et al.: Cathode materials for magnesium and magnesium-ion based batteries. Coordin. Chem. Rev. 287, 15–27 (2015)

    Article  CAS  Google Scholar 

  101. Liu, M., Rong, Z., Malik, R., et al.: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2015)

    Article  CAS  Google Scholar 

  102. Novák, P., Imhof, R., Haas, O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim. Acta 45, 351–367 (1999)

    Article  Google Scholar 

  103. Novák, P., Scheifele, W., Joho, F., et al.: Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc. 142, 2544–2550 (1995)

    Article  Google Scholar 

  104. Novák, P., Desilvestro, J.: Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 140, 140–144 (1993)

    Article  Google Scholar 

  105. Le, D.B., Passerini, S., Coustier, F., et al.: Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater. 10, 682–684 (1998)

    Article  CAS  Google Scholar 

  106. Wang, Z., Su, Q., Deng, H.: Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study. Phys. Chem. Chem. Phys. 15, 8705–8709 (2013)

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, B., Shi, H., Cao, R., et al.: Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys. 16, 18578–18585 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. Gautam, G.S., Canepa, P., Richards, W.D., et al.: Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 16, 2426–2431 (2016)

    Article  CAS  Google Scholar 

  109. Tepavcevic, S., Liu, Y., Zhou, D., et al.: Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194–8205 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. Lee, S.H., Dileo, R., Marschilok, A.C., et al.: Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem. Lett. 3, A87–A90 (2014)

    Article  CAS  Google Scholar 

  111. Imamura, D., Miyayama, M., Hibino, M., et al.: Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc. 150, A753–A758 (2003)

    Article  CAS  Google Scholar 

  112. Tang, P.E., Sakamoto, J.S., Baudrin, E., et al.: V2O5 aerogel as a versatile host for metal ions. J. Non-Cryst. Solids 350, 67–72 (2004)

    Article  CAS  Google Scholar 

  113. Cheng, Y., Shao, Y., Raju, V., et al.: Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26, 3446–3453 (2016)

    Article  CAS  Google Scholar 

  114. An, Q., Li, Y., Yoo, D.H., et al.: Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano. Energy 18, 265–272 (2015)

    Article  CAS  Google Scholar 

  115. Du, X., Huang, G., Qin, Y., et al.: Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv. 5, 76352–76355 (2015)

    Article  CAS  Google Scholar 

  116. Park, S.H., Lee, Y.S., Sun, Y.K.: Synthesis and electrochemical properties of sulfur doped-Li x MnO2−yS y materials for lithium secondary batteries. Electrochem. Commun. 5, 124–128 (2003)

    Article  CAS  Google Scholar 

  117. Inamoto, M., Kurihara, H., Yajima, T.: Vanadium pentoxide-based composite synthesized using microwave water plasma for cathode material in rechargeable magnesium batteries. Materials 6, 4514–4522 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arthur, T., Kato, K., Germain, J., et al.: Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 51, 15657–15660 (2015)

    Article  CAS  Google Scholar 

  119. Guerra, E.M., Ciuffi, K.J., Oliveira, H.P.: V2O5 xerogel-poly(ethylene oxide) hybrid material: synthesis, characterization, and electrochemical properties. J. Solid State Chem. 179, 3814–3823 (2006)

    Article  CAS  Google Scholar 

  120. Chao, D., Xia, X., Liu, J., et al.: A V2O5/conductive-polymer core/shell nanobelt array on three- dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)

    Article  CAS  PubMed  Google Scholar 

  121. Huguenin, F., Torresi, R.M.: Investigation of the electrical and electrochemical properties of nanocomposites from V2O5, polypyrrole, and polyaniline. J. Phys. Chem. C 112, 2202–2209 (2008)

    Article  CAS  Google Scholar 

  122. Reddy, C.V.S., Wei, J., Quan-Tao, Z., et al.: Cathodic performance of (V2O5 + PEG) nanobelts for Li ion rechargeable battery. J. Power Sources 166, 244–249 (2007)

    Article  CAS  Google Scholar 

  123. Shao, L., Jeon, J.W., Lutkenhaus, J.: Porous polyaniline nanofiber/vanadium pentoxide layer-by-layer electrodes for energy storage. J. Mater. Chem. A 1, 7648–7656 (2013)

    Article  CAS  Google Scholar 

  124. Perera, S.D., Archer, R.B., Damin, C.A., et al.: Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J. Power Sources 343, 580–591 (2017)

    Article  CAS  Google Scholar 

  125. Kulish, V.V., Manzhos, S.: Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides. RSC Adv. 7, 18643–18649 (2017)

    Article  Google Scholar 

  126. Niu, C., Meng, J., Han, C., et al.: VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. Luo, T., Liu, Y., Su, H., et al.: Nanostructured-VO2(B): a high-capacity magnesium-ion cathode and its electrochemical reaction mechanism. Electrochim. Acta 260, 805–813 (2018)

    Article  CAS  Google Scholar 

  128. Won, J.M., Ko, Y.N., Lee, J.K., et al.: Superior electrochemical properties of rutile VO2-carbon composite microspheres as a promising anode material for lithium ion batteries. Electrochim. Acta 156, 179–187 (2015)

    Article  CAS  Google Scholar 

  129. Pei, C., Xiong, F., Sheng, J., et al.: VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS. Appl. Mater. Inter. 9, 17060–17066 (2017)

    Article  CAS  Google Scholar 

  130. Jiao, L., Yuan, H., Si, Y., et al.: Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes. J. Power Sources 156, 673–676 (2006)

    Article  CAS  Google Scholar 

  131. Kim, R.H., Kim, J.S., Kim, H.J., et al.: Highly reduced VO x nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J. Mater. Chem. A. 2, 20636–20641 (2014)

    Article  CAS  Google Scholar 

  132. Jiao, L., Yuan, H., Wang, Y., et al.: Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem. Commun. 7, 431–436 (2005)

    Article  CAS  Google Scholar 

  133. Patzke, G.R., Krumeich, F., Nesper, R.: Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 2446–2461 (2002)

    Article  CAS  Google Scholar 

  134. Novák, P., Scheifele, W., Haas, O.: Magnesium insertion batteries-an alternative to lithium? J. Power Sources 54, 479–482 (1995)

    Article  Google Scholar 

  135. Rashad, M., Zhang, H., Asif, M., et al.: Low cost room temperature synthesis of NaV3O8.1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces 10, 4757–4766 (2018)

    Article  CAS  PubMed  Google Scholar 

  136. Cabello, M., Nacimiento, F., Alcántara, R., et al.: Nanobelts of beta-sodium vanadate as electrode for magnesium and dual magnesium-sodium batteries. J. Electrochem. Soc. 163, A2781–A2790 (2016)

    Article  CAS  Google Scholar 

  137. Chen, B., Laverock, J., Newby, D., et al.: Electronic structure of β-Na x V2O5 (x ≈ 0.33) polycrystalline films: growth, spectroscopy, and theory. J. Phys. Chem. C 118, 1081–1094 (2014)

    Article  CAS  Google Scholar 

  138. Delmas, C., Nadiri, A., Soubeyroux, J.L.: The nasicon-type titanium phosphates ATi2(PO4)3 (A = Li, Na) as electrode materials. Solid State Ion. 28–30((Part 1)), 419–423 (1988)

    Article  Google Scholar 

  139. Ong, S.P., Chevrier, V.L., Hautier, G., et al.: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)

    Article  CAS  Google Scholar 

  140. Shi, J.J., Yin, G.Q., Jing, L.M., et al.: Lithium and sodium diffusion in solid electrolyte materials of AM2(PO4)3(A = Li, Na, M = Ti, Sn and Zr). Int. J. Mod. Phys. B 28, 1450176 (2014)

  141. Kang, J., Chung, H., Doh, C., et al.: Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources 293, 11–16 (2015)

    Article  CAS  Google Scholar 

  142. Goodenough, J.B., Hong, Y.P., Kafalas, J.A.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)

    Article  CAS  Google Scholar 

  143. Makino, K., Katayama, Y., Miura, T., et al.: Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J. Power Sources 99, 66–69 (2001)

    Article  CAS  Google Scholar 

  144. Huang, Z.D., Masese, T., Orikasa, Y., et al.: Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv. 5, 8598–8603 (2015)

    Article  CAS  Google Scholar 

  145. Kim, J., Yoo, J.K., Jung, Y.S., et al.: Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv. Energy Mater. 3, 1004–1007 (2013)

    Article  CAS  Google Scholar 

  146. Liu, H., Gao, P., Fang, J., et al.: Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 47, 9110–9112 (2011)

    Article  CAS  Google Scholar 

  147. Muldoon, J., Bucur, C.B., Oliver, A.G., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)

    Article  CAS  Google Scholar 

  148. Canepa, P., Gautam, G.S., Malik, R., et al.: Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes. Chem. Mater. 27, 3317–3325 (2015)

    Article  CAS  Google Scholar 

  149. Canepa, P., Jayaraman, S., Cheng, L., et al.: Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy Environ. Sci. 8, 3718–3730 (2015)

    Article  CAS  Google Scholar 

  150. Cabello, M., Alcántara, R., Nacimiento, F., et al.: Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. Electrochim. Acta 246, 908–913 (2017)

    Article  CAS  Google Scholar 

  151. Li, Y., An, Q., Cheng, Y., et al.: A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34, 188–194 (2017)

    Article  CAS  Google Scholar 

  152. Zeng, J., Yang, Y., Lai, S., et al.: A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries. Chem-Eur. J. 23, 16898–16905 (2017)

    Article  CAS  PubMed  Google Scholar 

  153. Prosini, P.P., Lisi, M., Zane, D., et al.: Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 148, 45–51 (2002)

    Article  CAS  Google Scholar 

  154. Rui, X.H., Ding, N., Liu, J., et al.: Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 55, 2384–2390 (2010)

    Article  CAS  Google Scholar 

  155. Böckenfeld, N., Balducci, A.: Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J. Solid State Electrochem. 18, 959–964 (2014)

    Article  CAS  Google Scholar 

  156. Kaveevivitchai, W., Jacobson, A.J.: High capacity rechargeable magnesium-ion batteries based on a microporous molybdenum–vanadium oxide cathode. Chem. Mater. 28, 4593–4601 (2016)

    Article  CAS  Google Scholar 

  157. Miao, X., Chen, Z., Wang, N., et al.: Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy 34, 26–35 (2017)

    Article  CAS  Google Scholar 

  158. Cho, J.H., Aykol, M., Kim, S., et al.: Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136, 16116–16119 (2014)

    Article  CAS  PubMed  Google Scholar 

  159. Gao, T., Han, F., Zhu, Y., et al.: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5, 1401507 (2015)

  160. Zhang, Z., Xu, H., Cui, Z., et al.: High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A 4, 2277–2285 (2016)

    Article  CAS  Google Scholar 

  161. Minella, C.B., Gao, P., Zhao-Karger, Z., et al.: Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries. ChemElectroChem 4, 738–745 (2017)

    Article  CAS  Google Scholar 

  162. Hannah, D.C., Gautam, G.S., Canepa, P., et al.: Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem. Commun. 53, 5171–5174 (2017)

    Article  CAS  Google Scholar 

  163. Ling, C., Mizuno, F.: Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem. Mater. 25, 3062–3071 (2013)

    Article  CAS  Google Scholar 

  164. Sun, X., Blanc, L., Nolis, G.M., et al.: NaV1.25Ti0.75O4: a potential post spinel cathode material for Mg batteries. Chem. Mater. 30, 121–128 (2018)

    Article  CAS  Google Scholar 

  165. Yan, M., He, P., Chen, Y., et al.: Water-lubricated intercalation in V2O5·H2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018)

  166. Senguttuvan, P., Han, S.D., Kim, S., et al.: A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6, 1600826 (2016)

    Article  CAS  Google Scholar 

  167. Kundu, D., Adams, B.D., Ort, V.D., et al.: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016)

    Article  CAS  Google Scholar 

  168. Baghbanzadeh, M., Carbone, L., Cozzoli, P.D., et al.: Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 50, 11312–11359 (2011)

    Article  CAS  Google Scholar 

  169. He, P., Zhang, G., Liao, X., et al.: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy. Mater 8, 1702463 (2018)

  170. Xia, C., Guo, J., Lei, Y., et al.: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018)

  171. Alfaruqi, M.H., Mathew, V., Song, J., et al.: Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017)

    Article  CAS  Google Scholar 

  172. Tang, H., Xu, N., Pei, C., et al.: H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS. Appl. Mater. Interfaces 9, 28667–28673 (2017)

    Article  CAS  PubMed  Google Scholar 

  173. He, P., Quan, Y., Xu, X., et al.: High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13, 1702551 (2017)

  174. Li, H., He, P., Wang, Y., et al.: High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J. Mater. Chem. A 21, 10999–11009 (2011)

    Article  CAS  Google Scholar 

  175. Sarkar, S., Bhowmik, A., Pan, J., et al.: Preparation, structure study and electrochemistry of layered H2V3O8 materials: high capacity lithium-ion battery cathode. J. Power Sources 329, 179–189 (2016)

    Article  CAS  Google Scholar 

  176. Su, D., Wang, G.: Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013)

    Article  CAS  PubMed  Google Scholar 

  177. Li, G., Yang, Z., Jiang, Y., et al.: Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3 V2(PO4)3. Nano Energy 25, 211–217 (2016)

    Article  CAS  Google Scholar 

  178. Wang, D., Wei, Q., Sheng, J., et al.: Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys. Chem. Chem. Phys. 18, 12074–12079 (2016)

    Article  CAS  PubMed  Google Scholar 

  179. Mason, C.W., Lange, F.: Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4, A79–A82 (2015)

    Article  CAS  Google Scholar 

  180. He, P., Yan, M., Zhang, G., et al.: Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017)

  181. Jo, J.H., Sun, Y.K., Myung, S.T.: Hollandite-type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. J. Mater. Chem. A 5, 8367–8375 (2017)

    Article  CAS  Google Scholar 

  182. Xu, H.T., Zhang, H., Liu, L., et al.: Fabricating hexagonal Al-doped LiCoO2 nanomeshes based on crystal-mismatch strategy for ultrafast lithium storage. ACS Appl. Mater. Interfaces 7, 20979–20986 (2015)

    Article  CAS  PubMed  Google Scholar 

  183. Reed, L.D., Menke, E.: The roles of V2O5 and stainless steel in rechargeable Al-ion batteries. J. Electrochem. Soc. 160, A915–A917 (2013)

    Article  CAS  Google Scholar 

  184. Wang, H., Bai, Y., Chen, S., et al.: Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces 7, 80–84 (2015)

    Article  CAS  PubMed  Google Scholar 

  185. Gu, S., Wang, H., Wu, C., et al.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)

    Article  Google Scholar 

  186. Chiku, M., Takeda, H., Matsumura, S., et al.: Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces 7, 24385–24389 (2015)

    Article  CAS  PubMed  Google Scholar 

  187. Endres, F.: Physical chemistry of ionic liquids. Phys. Chem. Chem. Phys. 12, 1648 (2010)

    Article  CAS  PubMed  Google Scholar 

  188. Koketsu, T., Ma, J., Morgan, B.J., et al.: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16, 1142–1148 (2017)

    Article  CAS  PubMed  Google Scholar 

  189. Wang, H., Gu, S., Bai, Y., et al.: High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS. Appl. Mater. Interfaces 8, 27444–27448 (2016)

    Article  CAS  Google Scholar 

  190. Wang, H., Gu, S., Bai, Y., et al.: Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 3, 22677–22686 (2015)

    Article  CAS  Google Scholar 

  191. González, J.R., Nacimiento, F., Cabello, M., et al.: Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Adv. 6, 62157–62164 (2016)

    Article  CAS  Google Scholar 

  192. Wang, W., Jiang, B., Xiong, W., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3, 3383 (2013)

  193. Zhang, C., Song, H., Liu, C., et al.: Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater. 25, 3497–3504 (2015)

    Article  CAS  Google Scholar 

  194. Li, Q., Wei, Q., Sheng, J., et al.: Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2, 1500284 (2015)

  195. Jiang, J., Li, H., Huang, J., et al.: Investigation of the reversible intercalation/deintercalation of Al into the novel Li3VO4@C microsphere composite cathode material for aluminum-ion batteries. ACS. Appl. Mater. Interfaces 9, 28486–28494 (2017)

    Article  CAS  PubMed  Google Scholar 

  196. Nacimiento, F., Cabello, M., Alcántara, R., et al.: NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim. Acta 260, 798–804 (2017)

    Article  CAS  Google Scholar 

  197. Sun, X.G., Zhang, Z., Guan, H.Y., et al.: A sodium-aluminum hybrid battery. J. Mater. Chem. A 5, 6589–6596 (2017)

    Article  CAS  Google Scholar 

  198. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

  199. Vahidmohammadi, A., Hadjikhani, A., Shahbazmohamadi, S., et al.: Two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017)

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, X., Wang, S., Tu, J., et al.: Flower-like vanadium sulfide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. ChemSusChem 11, 709–715 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51602239, 51521001), the National Key Research and Development Program of China (2016YFA0202603, 2016YFA0202601), the National Basic Research Program of China (2013CB934103), the Programme of Introducing Talents of Discipline to Universities (B17034), the Hubei Provincial Natural Science Foundation of China (2016CFB267), the International Science and Technology Cooperation Program of China (2013DFA50840) and the Fundamental Research Funds for the Central Universities (WUT: 2017III009, 2017III005).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Qinyou An or Liqiang Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Peng, Z., Wu, L. et al. Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochem. Energ. Rev. 1, 169–199 (2018). https://doi.org/10.1007/s41918-018-0007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0007-y

Keywords

PACS

Navigation