Skip to main content
Log in

Fabrication of Nanoscale Active Plasmonic Elements Using Atomic Force Microscope Tip-Based Nanomachining

  • Original Article
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) is a widely adopted imaging and surface analysis technique that provides resolutions on the nanometer scale. AFM tip-based nanomachining has recently been adopted for the fabrication of arbitrarily shaped nanoscale structures. A major challenge of using AFM tip-based machining for the sculpting of nanoscale plasmonic structures is the build-up of displaced material along the sides of the channels. Here we apply this nanomechanical machining method to create active plasmonic elements and present the strategy we have been using to avoid the formation of such debris. Furthermore, a number of post-manufacturing treatments that can potentially be used to reduce the amount of debris surrounding the fabricated structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alavirad M, Olivieri A, Roy L, Berini P (2018) Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon. Chin Opt Lett 16(11):050007

    Article  Google Scholar 

  2. Winkler R, Schmidt F-P, Haselmann U, Fowlkes JD, Lewis BB, Kothleitner G, Rack PD, Plank H (2017) Direct-write 3D nanoprinting of plasmonic structures. ACS Appl Mater Interfaces 9(9):8233–8240

    Article  Google Scholar 

  3. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingunge. Z Phys 241:313

    Article  Google Scholar 

  4. Kollmann H, Piao X, Esmann M, Becker SF, Hou D, Huynh C, Kautschor L-O, Bösker G, Vieker H, Beyer A, Gölzhäuser A, Park N, Vogelgesang R, Silies M, Lienau C (2014) Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett 14(8):4778–4784

    Article  Google Scholar 

  5. Duan H, Manfrinato VR, Yang JKW, Winston D, Cord BM, Berggren KK (2010) Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale. J Vacuum Sci Technol B 28(6):C6H11–C6H17

  6. Berndt M, Rohmer M, Ashall B, Schneider C, Aeschlimann M, Zerulla D (2009) Polarization selective near-field focusing on mesoscopic surface patterns with threefold symmetry measured with PEEM. Opt Lett 34(7):959–961

    Article  Google Scholar 

  7. Ashall B, Berndt M, Zerulla D (2007) Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures. Appl Phys Lett 91(20):203109

  8. Ashall B, López-Barberá JF, McClean-Ilten É, Zerulla D (2013) Highly efficient broadband ultrafast plasmonics. Opt Express 21(22):27383–27391

    Article  Google Scholar 

  9. Ashall B, Vohnsen B, Berndt M, Zerulla D (2009) Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures. Phys Rev B 80(24): 245413

  10. Horák M, Bukvišová K, Švarc V, Jaskowiec J, Krápek V, Šikola T (2018) Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci Rep 8(1):9640

    Article  Google Scholar 

  11. Tasdemir Z, Wang X, Mochi I, van Lent-Protasova L, Meeuwissen M, Custers R, Rispens G, Hoefnagels R, Ekinci Y (2018) Evaluation of EUV resists for 5 nm technology node and beyond. In: Ronse KG, Hendrickx E, Naulleau PP, Gargini PA, Itani T (eds) International Conference on Extreme Ultraviolet Lithography 2018. International Society for Optics and Photonics, SPIE, pp 85–94

    Google Scholar 

  12. Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 23(3):877–894

    Article  Google Scholar 

  13. Yan Y, Sun Y, Li J, Hu Z, Zhao X (2014) Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip. Nanoscale Res Lett 9(1):372

    Article  Google Scholar 

  14. Yan YD, Sun T, Dong S (2007) Study on effects of tip geometry on AFM nanoscratching tests. Wear 262(3):477–483

    Article  Google Scholar 

  15. Mathew PT, Rodriguez BJ, Fang F (2020) Atomic and close-to-atomic scale manufacturing: A review on atomic layer removal methods using atomic force microscopy. Nanomanuf Metrol 3(3):167–186

    Article  Google Scholar 

  16. He Y, Yan Y, Geng Y, Brousseau E (2018) Fabrication of periodic nanostructures using dynamic plowing lithography with the tip of an atomic force microscope. Appl Surf Sci 427:1076–1083

    Article  Google Scholar 

  17. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  18. Yan Y, Geng Y, Hu Z (2015) Recent advances in AFM tip-based nanomechanical machining. Int J Mach Tools Manuf 99:1–18

    Article  Google Scholar 

  19. Zhang F, Edwards D, Deng X, Wang Y, Kilpatrick JI, Bassiri-Gharb N, Kumar A, Chen D, Gao X, Rodriguez BJ (2020) Investigation of AFM-based machining of ferroelectric thin films at the nanoscale. J Appl Phys 127(3):034103

    Article  Google Scholar 

  20. Notargiacomo A, Foglietti V, Cianci E, Capellini G, Adami M, Faraci P, Evangelisti F, Nicolini C (1999) Atomic force microscopy lithography as a nanodevice development technique. Nanotechnology 10(4):458–463

    Article  Google Scholar 

  21. McClean-Ilten É, Zerulla D (2016) Nanoscale tailored plasmonic material for optimum broadband solar harvesting. Adv Opt Mater 4(3):413–418

    Article  Google Scholar 

  22. O’Toole S, Zerulla D (2020) Propagating surface plasmon polaritons on systems with variable periodicity and variable gap-depth. Materials 13(21):4753

    Article  Google Scholar 

  23. Williams MO, Jervell ALH, Hiller D, Zacharias M (2018) Using HCl to control silver dissolution in metal-assisted chemical etching of silicon. Phys Status Solidi A 215:1800135

    Article  Google Scholar 

  24. Dishner MH, Ivey MM, Gorer S, Hemminger JC, Feher FJ (1998) Preparation of gold thin films by epitaxial growth on mica and the effect of flame annealing. J Vac Sci Technol A 16:3295–3300

    Article  Google Scholar 

  25. Szunerits S, Boukherroub R (2006) Preparation and characterization of thin films of SiOx on gold substrates for surface plasmon resonance studies. Langmuir 22(4):1660–1663

    Article  Google Scholar 

  26. Image courtesy of Adama Innovations Ltd

Download references

Acknowledgements

The authors thank the Irish Centre for High-end Computing, ICHEC, for the permission to use their large, shared memory node for the simulations presented here and the Science Foundation Ireland for awarding us with the prestigious Special Future Innovator Prize under Grant No. SFI 18/FIP/3551R.

Funding

Funding was provided by Science Foundation Ireland (Grant No. SFI 18/FIP/3551R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Zerulla.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, C., O’Toole, S. & Zerulla, D. Fabrication of Nanoscale Active Plasmonic Elements Using Atomic Force Microscope Tip-Based Nanomachining. Nanomanuf Metrol 5, 50–59 (2022). https://doi.org/10.1007/s41871-021-00121-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-021-00121-7

Keywords

Navigation