Skip to main content
Log in

Photoluminescence and Raman Spectroscopy Study on Color Centers of Helium Ion-Implanted 4H–SiC

  • Original Articles
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Color centers in silicon carbide (SiC) are promising candidates for quantum technologies. However, the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging. In this study, helium ion-implanted 4H–SiC was characterized by atomic force microscopy (AFM), confocal photoluminescence (PL), and confocal Raman spectroscopy at room temperature. PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping. Lattice defects (C–C bond) were detected by continuous laser excitation at 532 nm and 638 nm, respectively. PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects. Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup, helium bubbles, as well as swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528(1):1–45

    Article  Google Scholar 

  2. Awschalom DD, Hanson R, Wrachtrup J, Zhou BB (2018) Quantum technologies with optically interfaced solid-state spins. Nat Photonics 12(9):516–527

    Article  Google Scholar 

  3. Luo H, Xu Z, Shi C, Hu M, Sun F, Shang L, Fang F (2019) Nanofabrication of nitrogen-vacancy color center. Curr Nanosci 15(5):433–436

    Article  Google Scholar 

  4. Yang X, Yang X, Sun R, Kawai K, Arima K, Yamamura K (2019) Obtaining atomically smooth 4H–SiC (0001) surface by controlling balance between anodizing and polishing in electrochemical mechanical polishing. Nanomanuf Metrol 2(3):140–147

    Article  Google Scholar 

  5. Zhai W, Gao B, Chang J, Wang H (2019) Optimization of ultrasonic-assisted polishing SiC through CFD simulation. Nanomanuf Metrol 2(1):36–44

    Article  Google Scholar 

  6. Tarasenko SA, Poshakinskiy AV, Simin D, Soltamov VA, Mokhov EN, Baranov PG, Dyakonov V, Astakhov GV (2018) Spin and optical properties of silicon vacancies in silicon carbide-a review. Phys Status Solidi B 255(1):1700258

    Article  Google Scholar 

  7. Soykal O, Reinecke TL (2017) Quantum metrology with a single spin-3/2 defect in silicon carbide. Phys Rev B 95:081405

    Article  Google Scholar 

  8. Widmann M, Lee SY, Rendler T, Son NT, Fedder H, Paik S, Yang LP, Zhao N, Yang S, Booker I, Denisenko A, Jamali M, Momenzadeh SA, Gerhardt I, Ohshima T, Gali A, Janzen E, Wrachtrup J (2015) Coherent control of single spins in silicon carbide at room temperature. Nat Mater 14(2):164–168

    Article  Google Scholar 

  9. Lohrmann A, Johnson BC, McCallum JC, Castelletto S (2017) A review on single photon sources in silicon carbide. Rep Prog Phys 80(3):034502

    Article  Google Scholar 

  10. Chen F, Zhao ER, Hu T, Shi Y, Sirbuly DJ, Jokerst JV (2019) Silicon carbide nanoparticles as a photoacoustic and photoluminescent dual-imaging contrast agent for long-term cell tracking. Nanosc Adv 1(9):3514–3520

    Article  Google Scholar 

  11. Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov GV (2017) Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett 17(5):2865–2870

    Article  Google Scholar 

  12. Zargaleh SA, Hameau S, Eble B, Margaillan F, von Bardeleben HJ, Cantin JL, Gao W (2018) Nitrogen vacancy center in cubic silicon carbide: a promising qubit in the 1.5μm spectral range for photonic quantum networks. Phys Rev B 98(16):165203

    Article  Google Scholar 

  13. Castelletto S, Almutairi AFM, Kumagai K, Katkus T, Hayasaki Y, Johnson BC, Juodkazis S (2018) Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt Lett 43(24):6077–6080

    Article  Google Scholar 

  14. Peng B, Jia RX, Wang YT, Dong LP, Hu JC, Zhang YM (2016) Concentration of point defects in 4H–SiC characterized by a magnetic measurement. Aip Adv 6(9):095201

    Article  Google Scholar 

  15. Castelletto S, Johnson BC, Ivady V, Stavrias N, Umeda T, Gali A, Ohshima T (2014) A silicon carbide room-temperature single-photon source. Nat Mater 13(2):151–156

    Article  Google Scholar 

  16. Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD (2011) Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479(7371):84–87

    Article  Google Scholar 

  17. Wang JF, Zhang XM, Zhou Y, Li K, Wang ZY, Peddibhoda P, Liu FC, Bauerdick S, Rudzinski A, Liu Z, Gao WB (2017) Scalable fabrication of single silicon vacancy defect arrays in silicon carbide using focused ion beam. ACS Photonics 4(5):1054–1059

    Article  Google Scholar 

  18. Al Atem AS, Ferrier L, Canut B, Chauvin N, Guillot G, Bluet J-M (2016) Luminescent point defect formation in 3C-SiC by ion implantation. Phys Status Solidi C 13(10–12):1–4

    Google Scholar 

  19. Cottom J, Gruber G, Hadley P, Koch M, Pobegen G, Aichinger T, Shluger A (2016) Recombination centers in 4H-SiC investigated by electrically detected magnetic resonance and ab initio modeling. J Appl Phys 119(18):181507

    Article  Google Scholar 

  20. Li Q, Wang JF, Yan FF, Cheng ZD, Liu ZH, Zhou K, Guo LP, Zhou X, Zhang WP, Wang XX, Huang W, Xu JS, Li CF, Guo GC (2019) Nanoscale depth control of implanted shallow silicon vacancies in silicon carbide. Nanoscale 11(43):20554–20561

    Article  Google Scholar 

  21. Wang J-F, Li Q, Yan F-F, Liu H, Guo G-P, Zhang W-P, Zhou X, Guo L-P, Lin Z-H, Cui J-M, Xu X-Y, Xu J-S, Li C-F, Guo G-C (2019) On-demand generation of single silicon vacancy defects in silicon carbide. Acs Photonics 6(7):1736–1743

    Article  Google Scholar 

  22. Hijazi H, Li M, Barbacci D, Schultz A, Thorpe R, Gustafsson T, Feldman LC (2019) Channeling in the helium ion microscope. Nucl Instrum Methods Phys Res Sect B 456:92–96

    Article  Google Scholar 

  23. Chu Y, de Leon NP, Shields BJ, Hausmann B, Evans R, Togan E, Burek MJ, Markham M, Stacey A, Zibrov AS, Yacoby A, Twitchen DJ, Loncar M, Park H, Maletinsky P, Lukin MD (2014) Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett 14:1982–1986

    Article  Google Scholar 

  24. Ali AA, Kumar J, Ramakrishnan V, Asokan K (2018) Raman spectroscopic study of He ion implanted 4H and 6H–SiC. Mater Lett 213:208–210

    Article  Google Scholar 

  25. Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344

    Article  Google Scholar 

  26. Stumpf F, Abu Quba AA, Singer P, Rumler M, Cherkashin N, Schamm-Chardon S, Cours R, Rommel M (2018) Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy. J Appl Phys 123(12):125104

    Article  Google Scholar 

  27. Tromas C, Audurier V, Leclerc S, Beaufort MF, Declémy A, Barbot JF (2008) Evolution of mechanical properties of SiC under helium implantation. J Nucl Mater 373(1–3):142–149

    Article  Google Scholar 

  28. Leclerc S, Declémy A, Beaufort MF, Tromas C, Barbot JF (2005) Swelling of SiC under helium implantation. J Appl Phys 98(11):113506

    Article  Google Scholar 

  29. Zhang CH, Donnelly SE, Vishnyakov VM, Evans JH (2003) Dose dependence of formation of nanoscale cavities in helium-implanted 4H-SiC. J Appl Phys 94(9):6017–6022

    Article  Google Scholar 

  30. Leclerc S, Beaufort MF, Declémy A, Barbot JF (2008) Evolution of defects upon annealing in He-implanted 4H–SiC. Appl Phys Lett 93(12):122101

  31. He Z, Liu T, Xu Z, Song Y, Rommel M, Fang F (2018) Investigation of Ga ion implantation-induced damage in single-crystal 6H–SiC. J Micromanuf 1(2):1–9

    Article  Google Scholar 

  32. Nakashima S, Harima H (1997) Raman investigation of SiC polytypes. Phys Status Solidi A 162:26

    Article  Google Scholar 

  33. Hain TC, Fuchs F, Soltamov VA, Baranov PG, Astakhov GV, Hertel T, Dyakonov V (2014) Excitation and recombination dynamics of vacancy-related spin centers in silicon carbide. J Appl Phys 115(13)

  34. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods Phys Res Sect B 268(11–12):1818–1823

    Article  Google Scholar 

  35. Li R, Zhu R, Chen S, He C, Li M, Zhang J, Gao P, Liao Z, Xu J (2019) Study of damage generation induced by focused helium ion beam in silicon. J Vac Sci Technol B 37(3):031804

    Article  Google Scholar 

  36. Tabaksblat R, MeierBj RJKIP (1992) Confocal Raman microspectroscopy: theory and application to thin polymer samples. Appl Spectrosc 46:60–68

    Article  Google Scholar 

  37. Harima H, Si N, Uemura T (1995) Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H–SiC. J Appl Phys 78(3):1996–2005

    Article  Google Scholar 

  38. Feng M, Wang Y, Hao J, Lan G (2003) Raman study of SiC polytype structure. Chin J Light Scatter 15:158–161

    Google Scholar 

  39. Bolse W (1998) Formation and development of disordered networks in Si-based ceramics under ion bombardment. Nucl Instrum Methods Phys Res B 141:133–139

    Article  Google Scholar 

  40. Sorieul S, Costantini JM, Gosmain L, Thomé L, Grob JJ (2006) Raman spectroscopy study of heavy-ion-irradiated α-SiC. J Phys Condens Matter 18(22):5235–5251

    Article  Google Scholar 

  41. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos T R Soc A 362(1824):2271–2288

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51575389, 51761135106), National Key Research and Development Program of China (2016YFB1102203), State key laboratory of precision measuring technology and instruments (Pilt1705), and the ‘111’ Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014). The authors would also like to thank Mr. Qiang Li, Prof. Pengfei Wang, Prof. Jinshi Xu and Prof. Fangwen Sun from the University of Science and Technology of China, Prof. Xiaoying Li and Dr. Tao Xue from Tianjin University for valuable discussions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongwei Xu, Mathias Rommel or Fengzhou Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Xu, Z., Li, R. et al. Photoluminescence and Raman Spectroscopy Study on Color Centers of Helium Ion-Implanted 4H–SiC. Nanomanuf Metrol 3, 205–217 (2020). https://doi.org/10.1007/s41871-020-00061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-020-00061-8

Keywords

Navigation