Skip to main content
Log in

Uncertainty optimization based feature subset selection model using rough set and uncertainty theory

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

The rough set is a tool for the assessment of uncertainty, and the rough set reducts formation is the technique to remove uncertainty in the feature set for feature subset selection. This work uses uncertainty theory from the rough set perspective to find uncertainty optimization-based reducts (UOR). We formulate an algorithm based on uncertainty optimization to obtain reducts of the feature set for effectiveness and performance enhancement in feature selection. The average accuracy of the reducts found by the UOR algorithm is up to 96.66%. The proposed reduct approach is compared with the existing methods using the same numerical datasets. The comparison results show that the UOR method finds feature subsets of minimum sizes with similar classification accuracy compared to existing reduct methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kahneman D, Tversky A (1982) Variants of uncertainty. Cognition 11(2):143–157. https://doi.org/10.1016/0010-0277(82)90023-3

    Article  Google Scholar 

  2. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356. https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  3. Ahmed W, Beg M, Ahmad T (2020) A fuzzy rough set based fitting approach for fuzzy set-valued information system. Int J Inf Technol 12(4):1355–1364. https://doi.org/10.1007/s41870-019-00304-y

    Article  Google Scholar 

  4. Sadiq M, Devi VS (2021) A rough-set based approach for the prioritization of software requirements. Int J Inf Technol pp. 1–11. https://doi.org/10.1007/s41870-021-00749-0

  5. Pawlak Z (2012) Rough sets: Theoretical aspects of reasoning about data. vol. 9. Springer, New York

  6. Zhang X, Wu J, Yang X, Ou H, Lv T (2009) A novel pattern extraction method for time series classification. Optim Eng 10(2):253–271. https://doi.org/10.1007/s11081-008-9056-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Wroblewski J (1995) Finding minimal reducts using genetic algorithms. In: Proceedings of the second annual join conference on information science. vol. 2; pp 186–189

  8. Nguyen HS, Slezak D (1999) Approximate reducts and association rules. In: International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Springer, pp 137–145

  9. Zhang X, Miao D (2017) Three-way attribute reducts. Int J Approx Reason 88:401–434. https://doi.org/10.1016/j.ijar.2017.06.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Mafarja MM, Mirjalili S (2019) Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection. Soft Comput 23(15):6249–6265. https://doi.org/10.1007/s00500-018-3282-y

    Article  Google Scholar 

  11. Rodriguez-Diez V, Martinez-Trinidad JF, Carrasco-Ochoa JA, Lazo-Cortes MS, Olvera-Lopez JA (2020) MinReduct: a new algorithm for computing the shortest reducts. Pattern Recogn Lett 138:177–184. https://doi.org/10.1016/j.patrec.2020.07.004

    Article  Google Scholar 

  12. Cornejo ME, Medina J, Ramirez-Poussa E (2018) Characterizing reducts in multi-adjoint concept lattices. Inf Sci 422:364–376. https://doi.org/10.1016/j.ins.2017.08.099

    Article  MathSciNet  MATH  Google Scholar 

  13. Nandhini N, Thangadurai K (2019) An incremental rough set approach for faster attribute reduction. Int J Inf Technol pp 1–15. https://doi.org/10.1007/s41870-019-00326-6

  14. Aven T, Renn O (2009) On risk defined as an event where the outcome is uncertain. J Risk Res 12(1):1–11. https://doi.org/10.1080/13669870802488883

    Article  Google Scholar 

  15. Motro A, Smets P (1997) Uncertainty management in information systems: from needs to solutions. Springer, New York

  16. Wiltbank R, Read S, Dew N, Sarasvathy SD (2009) Prediction and control under uncertainty: outcomes in angel investing. J Bus Ventur 24(2):116–133. https://doi.org/10.1016/j.jbusvent.2007.11.004

    Article  Google Scholar 

  17. Moradkhani M, Amiri A, Javaherian M, Safari H (2015) A hybrid algorithm for feature subset selection in high-dimensional datasets using FICA and IWSSr algorithm. Appl Soft Comput 35:123–135. https://doi.org/10.1016/j.asoc.2015.03.049

    Article  Google Scholar 

  18. Benitez-Caballero MJ, Medina J, Ramirez-Poussa E, Slezak D (2018) Bireducts with tolerance relations. Inf Sci 435:26–39. https://doi.org/10.1016/j.ins.2017.12.037

    Article  MathSciNet  MATH  Google Scholar 

  19. Hosseini ES, Moattar MH (2019) Evolutionary feature subsets selection based on interaction information for high dimensional imbalanced data classification. Appl Soft Comput 82:105581. https://doi.org/10.1016/j.asoc.2019.105581

    Article  Google Scholar 

  20. Manikandan G, Abirami S (2021) An efficient feature selection framework based on information theory for high dimensional data. Appl Soft Comput 111:107729. https://doi.org/10.1016/j.asoc.2021.107729

    Article  Google Scholar 

  21. Polkowski L (2013) Rough sets in knowledge discovery 2: applications, case studies and software systems. vol. 19. Physica

  22. Padula SL, Gumbert CR, Li W (2006) Aerospace applications of optimization under uncertainty. Optim Eng 7(3):317–328. https://doi.org/10.1007/s11081-006-9974-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Romero VJ, Ayon DV, Chen CH (2006) Demonstration of probabilistic ordinal optimization concepts for continuous-variable optimization under uncertainty. Optim Eng 7(3):343–365. https://doi.org/10.1007/s11081-006-9978-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Elishakoff I, Ohsaki M (2010) Optimization and anti-optimization of structures under uncertainty. World Scientific, Singapore

  25. Rahal S, Li Z (2021) Norm induced polyhedral uncertainty sets for robust linear optimization. Optim Eng pp 1–37. https://doi.org/10.1007/s11081-021-09659-3

  26. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46(1):39–59. https://doi.org/10.1016/0022-0000(93)90048-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Bubnicki Z (2001) Uncertain variables and their application to decision making problems. IEEE Trans Syst Man Cybern Part A: Syst Hum 31(6):587–596. https://doi.org/10.1109/3468.983415

    Article  MATH  Google Scholar 

  28. Liu B (2007) Uncertainty theory. Springer, New York, pp 205–234

  29. Pawlak Z (2002) Rough sets and intelligent data analysis. Inf Sci 147(1–4):1–12. https://doi.org/10.1016/S0020-0255(02)00197-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Sugeno M (1993) Fuzzy measures and fuzzy integrals-a survey. In: Readings in fuzzy sets for intelligent systems. Elsevier, Amsterdam, pp 251–257

  31. Bohning D, Bohning W, Holling H (2008) Revisiting Youden’s index as a useful measure of the misclassification error in meta-analysis of diagnostic studies. Stat Methods Med Res 17(6):543–554. https://doi.org/10.1177/0962280207081867

    Article  MathSciNet  Google Scholar 

  32. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  33. Kumar A, Prasad PS (2021) Incremental fuzzy rough sets based feature subset selection using fuzzy min–max neural network preprocessing. Int J Approx Reason 139:69–87. https://doi.org/10.1016/j.ijar.2021.09.006

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang X, Mei C, Chen D, Yang Y, Li J (2019) Active incremental feature selection using a fuzzy-rough-set-based information entropy. IEEE Trans Fuzzy Syst 28(5):901–915. https://doi.org/10.1109/TFUZZ.2019.2959995

    Article  Google Scholar 

  35. Ni P, Zhao S, Wang X, Chen H, Li C, Tsang EC (2020) Incremental feature selection based on fuzzy rough sets. Inf Sci 536:185–204. https://doi.org/10.1016/j.ins.2020.04.038

    Article  MathSciNet  MATH  Google Scholar 

  36. Bazan JG, Nguyen HS, Nguyen SH, Synak P, Wroblewski J (2000) Rough set algorithms in classification problem. In: Rough set methods and applications. Springer, New York, pp 49–88

  37. Bazan JG, Szczuka M (2005) The rough set exploration system. In: Transactions on Rough Sets III. Springer, New York, pp 37–56

  38. Dua D, Graff C (2017) UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php

Download references

Acknowledgements

The authors are very grateful to the Department of Mathematics, National Institute of Technology Raipur (C. G.), India, for giving facilities, space, and an opportunity for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Sinha.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A.K., Shende, P. & Namdev, N. Uncertainty optimization based feature subset selection model using rough set and uncertainty theory. Int. j. inf. tecnol. 14, 2723–2739 (2022). https://doi.org/10.1007/s41870-022-00994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-00994-x

Keywords

Navigation