Skip to main content

Advertisement

Log in

Gamma-ray shielding properties of some dosimetric materials

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Radiation is important in dental science as it is used in both diagnostic and also in treatment issues. The teeth are every single day exposed to a significant amount of wear due to remaining hard particles from food and tooth brushing or even due to the contact with the other teeth. Dental restorations are widely used to correct the damage caused by this wear. In this study, it is aimed to determine the radiation shielding properties of the dosimetric materials which are namely hydroxyapatite (HAP) and urethane di(meth)acrylates (UDMAs). The linear attenuation coefficients of dosimetric materials were calculated using GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo simulation code. The obtained results were also compared with the calculation done using XCOM. The mean free path (mfp), half value length (HVL), and tenth value length (TVL) have also been obtained. The highest LAC value was obtained for S2 sample for 511, 662, 835, 1173, 1275, and 1332 keV energies (0.170, 0.149, 0.133, 0.112, 0.108, and 0.105 cm−1, respectively) and the lowest LAC values were obtained for S3 sample for 511, 662, 835, 1173, 1275, and 1332 keV gamma energies (0.102, 0.091, 0.082, 0.069, 0.066, and 0.065 cm−1, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh, N.B., Su, C-H., Choa, F-S., Arnold, B., Cooper, C., Cullum, B., Kelly, L.: Morphology and performance of organic nanocomposites for γ-ray sensing. Emerg. Mater. Res. 9–2, 520–526 (2020). https://doi.org/10.1680/jemmr.18.00050

  2. Akkurt, I., Mavi, B., Akkurt, A., Basyigit, C., Kilincarslan, S., Yalim, H.A.: Study on Z dependence of partial and total mass attenuation coefficients. J. Quant. Spectrosc. Radiat. Transfer 94(3–4), 379–385 (2005). https://doi.org/10.1016/j.jqsrt.2004.09.024

    Article  CAS  Google Scholar 

  3. Boodaghi Malidarre, R., Akkurt, I.: A Monte Carlo study on attenuation characteristics of colemanite- and barite-containing resources irradiated by 252Cf source against neutron–gamma photon. Polym. Bull. 79, 7843–7870 (2022). https://doi.org/10.1007/s00289-021-03883-8

    Article  CAS  Google Scholar 

  4. Akkurt, I., Malidarreh, P B., Malidarre, R.B.: Simulation and prediction the attenuation behavior of the KNN-LMN based lead free ceramics by FLUKA code and artificial neural network (ANN)-based algorithm. Environ Technol. (2021). https://doi.org/10.1080/09593330.2021.2008017

  5. Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B.: The shielding of g-rays by concrete produced with barite. Prog. Nucl. Energy 46(1), 1–11 (2005)

    Article  CAS  Google Scholar 

  6. Çelen, Y.Y.: Gamma ray shielding parameters of some phantom fabrication materials for medical dosimetry. Emerg. Mater. Res. 10(3), 307–313 (2021). https://doi.org/10.1680/jemmr.21.00043

  7. Sariyer, D., Küçer, R.: Effect of different materials to concrete as neutron shielding application. Acta Phys. Pol. A. 1374(4), 477 (2020). https://doi.org/10.12693/APhysPolA.137.477

  8. Çelen, Y.Y., Evcin, A.: Synthesis and characterizations of magnetite–borogypsum for radiation shielding. Emerg. Mater. Res. 9–3:770–775. (2020). https://doi.org/10.1680/jemmr.20.00098

  9. Kurtulus, R., Kavas, T., Mahmoud, K.A., Akkurt, I., Gunoglu, K., Sayyed, M.I.: Evaluation of gamma-rays attenuation competences for waste soda-lime glass containing MoO3: experimental study, XCOM computations, and MCNP-5 results. J. Non-Cryst. Solids. 557, 120572. (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120572

  10. Boodaghi Malidarre, R., Akkurt, I.: Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci: Mater. Electron. 32, 11666–11682 (2021). https://doi.org/10.1007/s10854-021-05776-y

    Article  CAS  Google Scholar 

  11. Tekin, H.O., ALMisned, G., Zakaly, H.M.H., Zamil, A., Khoucheich, D., Bilal, G., Al-Sammarraie, L., Issa, S.A.M., Al-Buriahi, M.S., Ene, A.: Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses. Open Chem. 20(1), 130–145 (2022). https://doi.org/10.1515/chem-2022-0128

  12. Al-Obaidi, S., Akyıldırım, H., Gunoglu, K., Akkurt, I.: Acta Physica Polonica A 137–4. 551 (2020). https://doi.org/10.12693/APhysPolA.137.551

  13. Sarıyer, D.: Acta Physica Polonica A 137–4. 539 (2020). https://doi.org/10.12693/APhysPolA.137.539

  14. Akkurt, I., Malidarre, R.B.: Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code. Radiat. Eff. Defects Solids. 176(9–10), 906–918 (2021). https://doi.org/10.1080/10420150.2021.1975708

    Article  CAS  Google Scholar 

  15. Malidarrea, R.B., Kulali, F., Inal, A., Oz, A.: Monte Carlo simulation of the waste soda-lime-silica glass system contained Sb2O3. Emerg. Mater. Res. 9–4, 1334–1340 (2020). https://doi.org/10.1680/jemmr.20.00202

  16. Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A.: Radiation shielding of concretes containing different aggregates. Cement. Concr. Compos. 28(2), 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  CAS  Google Scholar 

  17. El-Khayatt, A.M., Akkurt, İ: Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy. 60, 8–14 (2013). https://doi.org/10.1016/j.anucene.2013.04.021

    Article  CAS  Google Scholar 

  18. Akkurt, I., Akyıldırım, H., Mavi, B., Kilincarslan, S., Basyigit, C.: Ann. Nucl. Energy. 37–7, 910–914 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  CAS  Google Scholar 

  19. Günay, O., Eke, C.: Determination of terrestrial radiation level and radiological parameters of soil samples from Sariyer-Istanbul in Turkey. Arab J Geosci 12, 631 (2019). https://doi.org/10.1007/s12517-019-4830-1

    Article  CAS  Google Scholar 

  20. Rammah, Y.S., Kumar, A., Abdel-Azeem Mahmoud, K., El-Mallawany, R., El-Agawany, F.I., Susoy, G., Tekin, H.O.: SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications. Emerg. Mater. Res. 9–3, 1000–1008 (2020). https://doi.org/10.1680/jemmr.20.00150

  21. Çelen, Y.Y., Akkurt, I., Ceylan, Y., Atçeken, H.: Application of experiment and simulation to estimate radiation shielding capacity of various rocks. Arab. J. GeoSci. 14, 1471 (2021). https://doi.org/10.1007/s12517-021-08000-7

    Article  Google Scholar 

  22. Hanfi, M.Y., Sayyed, M.I., Lacomme, E., et al.: The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nucl. Eng. Technol. 53(6), 2000–2010 (2021). https://doi.org/10.1016/j.net.2020.12.012

  23. Tekin, H.O., ALMisned, G., Susoy, G., Zakaly, H.M.H., Issa, S.A.M., Kilic, G., Rammah, Y.S., Lakshminarayana, G., Ene, A.: A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chem. 20(1), 69–80 (2022). https://doi.org/10.1515/chem-2022-0127

  24. Özseven, A.: Assessment of using electronic portal imaging device for analysing bolus material utilised in radiation therapy. Open Chem. 20(1), 61–68 (2022). https://doi.org/10.1515/chem-2022-0126

  25. Sarihan, M., Malidarre, R.B., Akkurt, I.: An extensive study on the neutron-gamma shielding and mass stopping power of (70-x) CRT–30K2O–xBaO glass system for 252Cf neutron source. Environ. Technol. (2021). https://doi.org/10.1080/09593330.2021.1987529

  26. Günay, O., Sarihan, M., Yarar, O., Akkurt, İ., Demir, M.: Measurement of radiation dose in thyroid scintigraphy. Acta Phys. Polon. A. 137–4, 569 (2020). https://doi.org/10.12693/APhysPolA.137.569

  27. Tekin, H.O., Cavli, B., Altunsoy, E.E., Manici, T., Ozturk, C., Karakas, H.M.: An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. Int. J. Comput. Exp. Sci. Eng. 4–2, 37-40 (2018). https://doi.org/10.22399/ijcesen.408231

  28. Tekin, H.O., Issa, S.A.M., Mahmoud, K.A., El-Agawany, F.I., Rammah, Y.S., Susoy, G., Al-Buriahi, M.S., Abuzaid, M.M., Akkurt, I.: Nuclear radiation shielding competences of barium (Ba) reinforced borosilicate glasses. Emerg. Mater. Res. 9–4, 1131–1144 (2020). https://doi.org/10.1680/jemmr.20.00185

  29. Akkurt, I., El-Khayatt, A.M.: The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 51, 5–9 (2013). https://doi.org/10.1016/j.anucene.2012.08.026

    Article  CAS  Google Scholar 

  30. Kulali, F.: Simulation studies on radiological parameters for marble concrete. Emerg. Mater. Res. 9–4, 1341–1347 (2020). https://doi.org/10.1680/jemmr.20.00307

    Article  Google Scholar 

  31. Akkurt, I., Akyıldırım, H.: Radiation transmission of concrete including pumice for 662, 1173 and 1332 keV gamma rays. Nucl. Eng. Des. 252, 163–166 (2012). https://doi.org/10.1016/j.nucengdes.2012.07.008

    Article  CAS  Google Scholar 

  32. Baykal, Ş., D., Tekin., H., Mutlu, Ç., R.: An investigation on radiation shielding properties of borosilicate glass systems. Int. J. Comput. Exp. Sci. Eng. 7 (2):99–108 (2021). https://doi.org/10.22399/ijcesen.960151

  33. Akkurt, I., Tekin, H.O.: Radiological parameters for bismuth oxide glasses using Phy-X/PSD software. Emerg. Mater. Res. 9–3:1020–1027 (2020). https://doi.org/10.1680/jemmr.20.00209

  34. El-Agawany, F.I., Abdel-Azeem Mahmoud, K., Akyildirim, H., El-Sayed, Y., Tekin, H.O., Rammah, Y.S.: Physical, neutron, and gamma-rays shielding parameters for Na2O–SiO2–PbO glasses. Emerg. Mater. Res. 10–2: pp. 227–237 (2021). https://doi.org/10.1680/jemmr.20.00297

  35. Nar, M., Arslankaya, S.: Prediction of passenger demand for railway systems using artificial neural network and deep learning. Open Chem. 20(1) (2022). https://doi.org/10.1515/chem-2022-0124

  36. Altunsoy, E.E., Tekin, H.O., Mesbahi, A., Akkurt, I.: MCNPX simulation for radiation dose absorption of anatomical regions and some organs. Acta Phys. Polon. A. 137–4:561 (2020). https://doi.org/10.12693/APhysPolA.137.561

  37. Kurtulus, R., Kavas, T., Akkurt, I., et al.: A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works. J. Mater. Sci: Mater. Electron (2021). https://doi.org/10.1007/s10854-021-05964-w

    Article  Google Scholar 

  38. Waheed, F., İmamoğlu, M., Karpuz, N., Ovalıoğlu, H.: Simulation of neutrons shielding properties for some medical materials. Int J Comput Exp Sci Eng 8 (1):6–9 (2022). https://doi.org/10.22399/ijcesen.1032359

  39. Akkurt, I.: Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy. 36(11–12), 1702–1705 (2009)

    Article  CAS  Google Scholar 

  40. Malidarre, R.B., Akkurt, I., Kavas, T.: Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for Alumino-Boro-Silicate Glasses. Radiat. Phys. Chem. 186, 109540 (2021). https://doi.org/10.1016/j.radphyschem.2021.109540

    Article  CAS  Google Scholar 

  41. Sarihan, M.: Simulation of gamma-ray shielding properties for materials of medical interest. Open Chem. 20(1), 81–87 (2022). https://doi.org/10.1515/chem-2021-0118

    Article  CAS  Google Scholar 

  42. Jawad, A.A., Demirkol, N., Gunoğlu, K., et al.: Radiation shielding properties of some ceramic wasted samples. Int. J. Environ. Sci. Technol. 16, 5039–5042 (2019). https://doi.org/10.1007/s13762-019-02240-7

    Article  Google Scholar 

  43. Akkurt, I., Gunoglu, K., Kurtulus, R., Kavas, T.: X-ray shielding parameters of lanthanum oxide added waste soda-lime glass. X-Ray Spectrom 50, 168–179 (2021). https://doi.org/10.1002/xrs.3210

    Article  CAS  Google Scholar 

  44. Malidarre, R.B., Akkurt, İ., Gunoglu, K., Akyıldırım, H.: Fast neutrons shielding properties for HAP-Fe2O3 composite materials. Int. J. Comput. Exp. Sci. Eng. 7(3):143–145 (2021). https://doi.org/10.22399/ijcesen.1012039

  45. Akkurt, I., Malidarre, R.B., Kartal, I., Gunoglu, K.: Monte Carlo simulations study on gamma ray–neutron shielding characteristics for vinyl ester composites. Polym Compos. 2021(42), 4764–4774 (2021). https://doi.org/10.1002/pc.26185

    Article  CAS  Google Scholar 

  46. Parlar, Z., Abdlhamed, A., Akkurt, İ: Gamma-ray-shielding properties of composite materials made of recycled sport footwear. Int. J. Environ. Sci. Technol. 16, 5113–5116 (2019). https://doi.org/10.1007/s13762-018-1876-7

    Article  CAS  Google Scholar 

  47. Çelen, Y.Y., Akkurt, İ, Kayıran, H.F.: Gamma ray shielding parameters of barium tetra titanate (BaTi4O9) ceramic. J. Mater. Sci: Mater. Electron. 32, 18351–18362 (2021). https://doi.org/10.1007/s10854-021-06376-6

    Article  CAS  Google Scholar 

  48. Kayiran, H.F.: Numerical analysis of composite discs with carbon/epoxy and aramid/epoxy materials. Emerg. Mater. Res. 11(1), 155–159 (2022). https://doi.org/10.1680/jemmr.21.00052

    Article  Google Scholar 

  49. Arslankaya, S., Çelik, M.T.: Green supplier selection in steel door industry using fuzzy AHP and fuzzy Moora methods. Emerg. Mater. Res. 10(4), 357–369 (2021). https://doi.org/10.1680/jemmr.21.00011

    Article  Google Scholar 

  50. Ratnayake, J.T., Mucalo, M., Dias, G.J.: Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. Part B: Appl Biomater. 105, 1285–1299 (2017)

    Article  CAS  Google Scholar 

  51. Drouet, C., Rey, C., Combes, C., Cazalbou, S., Sarda, S., Grossin, D.: Nanocrystalline apatites: a versatile functionalizable platform for biomedical applications for bone engineering… and beyond, pp. 14–22. Trans Tech Publ, Key Engineering Materials (2016)

    Google Scholar 

  52. Wang, W., Cheng, K.: Synthesis and characterization of ultraviolet light-curable resin for optical fiber coating. Eur. Polymer J. 39, 1891–1897 (2003)

    Article  CAS  Google Scholar 

  53. Chang, E., Holguin, D.: Curable optically clear pressure-sensitive adhesives. J. Adhes. 81, 495–508 (2005)

    Article  CAS  Google Scholar 

  54. Sarrionandia, M., Mondragon, I., Moschiar, S., Vazquez, A.: Analysis of kinetic parameters of an urethane–acrylate resin for pultrusion process. J. Appl. Polym. Sci. 77, 355–362 (2000)

    Article  CAS  Google Scholar 

  55. Finger, W.J., Fritz, U.B.: Resin bonding to enamel and dentin with one–component UDMA/HEMA adhesives. Eur. J. Oral Sci. 105, 183–186 (1997)

    Article  CAS  Google Scholar 

  56. Tanaka, J., Hashimoto, T., Stansbury, J.W., Antonucci, J.M., Suzuki, K.: Polymer properties on resins composed of UDMA and methacrylates with the carboxyl group. Dent. Mater. J. 20, 206–215 (2001)

    Article  CAS  Google Scholar 

  57. Hegazy, H.H., Al-Buriahi, M.S., Alresheedi, F., El-Agawany, F.I., Sriwunkum, C., Neffati, R., Rammah, Y.S.: Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: theoretical and simulation studies. Ceram. Int. 47(2):2772–2780 (2021). https://doi.org/10.1016/j.ceramint.2020.09.131.

  58. Rammah, Y.S., Özpolat, Ö.F., Alım, B., Şakar, E., El-Mallawany, R., El-Agawany, F.I.: Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiat. Phys. Chem. 176, 109069 (2020). https://doi.org/10.1016/j.radphyschem.2020.109069

    Article  CAS  Google Scholar 

  59. Kilic, G., El Agawany, F.I., Ilik, B.O., Mahmoud, K.A., Ilik, E., Rammah, Y.S.: Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy. Opt. Mater. 112:110757 (2021). https://doi.org/10.1016/j.optmat.2020.110757

  60. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., El-Adawy, A.,El Sayed Y.: The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceram. Int. 47(2):2547–2556 (2021). https://doi.org/10.1016/j.ceramint.2020.09.100

  61. Rammah, Y.S., Kavaz, E., Perişanoğlu, U., Kilic, G., El-Agawany, F.I., Tekin, H.O.: Charged particles and gamma-ray shielding features of oxyfluoride semiconducting glasses: TeO2-Ta2O5-ZnO/ZnF2. Ceram Int. Part A: 46(16), 25035–25042 (2020). https://doi.org/10.1016/j.ceramint.2020.06.289

  62. Rammah, Y.S., Al-Buriahi, M.S., El-Agawany, F.I., AbouDeif, Y.M., El Sayed Y.: Investigation of mechanical features and gamma-ray shielding efficiency of ternary TeO2-based glass systems containing Li2O, Na2O, K2O, or ZnO. Ceram. Int. 46(17):27561–27569 (2020). https://doi.org/10.1016/j.ceramint.2020.07.248

  63. Mahmoud, K.A., El-Agwany, F.I., Rammah, Y.S., Tashlykov, O.L.: Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. J. Non-Cryst. Solids 541, 120110 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120110

    Article  CAS  Google Scholar 

  64. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., El-Adawy, A., El Sayed, Y.: The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceram. Int. 46(17), 27163–27174 (2020). https://doi.org/10.1016/j.ceramint.2020.07.197

    Article  CAS  Google Scholar 

  65. Rammah, Y.S., El-Agawany, F.I., Gamal, A., et al.: Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses. J Inorg. Organomet. Polym. 31, 3505–3524 (2021). https://doi.org/10.1007/s10904-021-01976-5

    Article  CAS  Google Scholar 

  66. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., El-Adawy, A., El Sayed, Y.: Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: their potential in nuclear safety applications. Ceram. Int. 46(17):27616–27626 (2020). https://doi.org/10.1016/j.ceramint.2020.07.256

  67. Rammah, Y.S., El-Agawany, F.I., Abu El Soad, A.M., Yousef, E., El-Mesady, I.A.: Ionizing radiation attenuation competences of gallium germanate-tellurite glasses utilizing MCNP5 simulation code and Phy-X/PSD program. Ceram. Int. 46(14), 22766–22773 (2020). https://doi.org/10.1016/j.ceramint.2020.06.043

    Article  CAS  Google Scholar 

  68. Kilic, G., Ilik, E., Mahmoud, K.A., et al.: The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl. Phys. A 127, 265 (2021). https://doi.org/10.1007/s00339-021-04409-9

    Article  CAS  Google Scholar 

  69. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., El Sayed, Y., Ibrahim, S., Ali, A.A.: SrO-reinforced potassium sodium borophosphate bioactive glasses: compositional, physical, spectral, structural properties and photon attenuation competence. J. Non-Cryst. Solids. 559:120667 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120667

  70. Shams, M.S., Rammah, Y.S., El-Agawany, F.I., et al.: Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses. J. Mater. Sci: Mater. Electron. 32, 1877–1887 (2021). https://doi.org/10.1007/s10854-020-04956-6

    Article  CAS  Google Scholar 

  71. Rammah, Y.S., Olarinoye, I.O., El-Agawany, F.I., Mahmoud, K.A., Akkurt, I., ElSayed, Y.: Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses. Opt. Mater. 114:110897 (2021). https://doi.org/10.1016/j.optmat.2021.110897

  72. Nada Alfryyan, Z.A., Alrowaili, H.H., Somaily, I.O., Olarinoye, N.A., Mutuwong, C., Al-Buriahi, M.S.: Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga2O3. J. Taibah Univ. Sci. 16(1), 183–192 (2022). https://doi.org/10.1080/16583655.2022.2038468

    Article  Google Scholar 

  73. Samdani, Alharshan, G.A., Haritha, L., Chandra Sekhar, K., Alrowaili, Z.A., Olarinoye, I.O., Al-Buriahi, M.S.: Synthesis and characterization of the optical MgO-BaO-B2O3-TeO2-MnO2 glass system. Optik. 267:169679 (2022). https://doi.org/10.1016/j.ijleo.2022.169679

  74. Elqahtani, Z.M., Alrowaili, Z.A., Eke, C., Olarinoye, I.O., Mutuwong, C., Tonguc, B.T., Al-Buriahi, M.S.: Optical transmission quality and radiation shielding performance of TeO2+ZnO+La2O3 ternary glass system. Optik. 266:169625 (2022). https://doi.org/10.1016/j.ijleo.2022.169625

  75. Mustafa, U., Hüseyin Fırat, K., Vahap, K.A.: Gamma ray shielding parameters of carbon-aramid epoxy composite. Emerg. Mater. Res. 11:3, 1–8 (2022). https://doi.org/10.1680/jemmr.22.00072

  76. Choudhary, M.D., Iskender, A., Ghada, A., Ozan, T.H.: Radiation shielding properties for titanium dioxide added composites. Emerg. Mater. Res. 11:3:1–7 (2022). https://doi.org/10.1680/jemmr.22.00054

  77. Malidarre, R.B., Arslankaya, S., Nar, M., Kirelli, Y., Erdamar, I.Y.D., Karpuz, N., Dogan, S.O., Malidarreh, P.B.: Deep learning prediction of gamma-ray-attenuation behavior of KNN–LMN ceramics. Emerg. Mater. Res. 11–2 (2022). https://doi.org/10.1680/jemmr.22.00012

  78. Akkurt, I., Al-Obaidi, S., Akyildirim, H., et al.: Neutron shielding for 252Cf source: FLUKA simulations and measurements. Iran. J. Sci. Technol. Trans. Sci. (2022). https://doi.org/10.1007/s40995-022-01318-1

    Article  Google Scholar 

  79. Demir, N., Tarim, U.A., Popovici, M.A., et al.: Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code. J Radioanal Nucl Chem 298, 1303–1307 (2013). https://doi.org/10.1007/s10967-013-2494-y

    Article  CAS  Google Scholar 

  80. Gunoglu, K., Akkurt, İ.: “Radiation shielding properties of concrete containing magnetite. Prog. Nucl. Energy” 137:103776 (2021). https://doi.org/10.1016/j.pnucene.2021.103776

  81. Gunoglu, K., Özkavak, H.V., Akkurt, İ.: “Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: experimental, XCOM and Phy-X/PSD database software” Mater. Today. Commun. 29:102793 (2021). https://doi.org/10.1016/j.mtcomm.2021.102793

  82. Akkurt, I., Basyigit, C., Kilincarslan, S., Beycioglu, A.: Prediction of photon attenuation coefficients of heavy concrete by fuzzy logic. J. Franklin Inst-Eng. Appl. Mathetamics. 347–9:1589–1597 (2010). https://doi.org/10.1016/j.jfranklin.2010.06.002

  83. Andreo, P.: Monte Carlo techniques in medical radiation physics. Phys. Med. Biol. 36, 861 (1991)

    Article  CAS  Google Scholar 

  84. Arce, P., Rato, P., Canadas, M., Lagares, J.I., GAMOS: a Geant4-based easy and flexible framework for nuclear medicine applications, 2008 IEEE Nuclear Science Symposium Conference Record, IEEE. pp. 3162-3168 (2008)

  85. Arce, P., Lagares, J.I., Harkness, L., Pérez-Astudillo, D., Cañadas, M., Rato, P., de Prado, M., Abreu, Y., de Lorenzo, G., Kolstein, M.: Gamos: a framework to do Geant4 simulations in different physics fields with an user-friendly interface. Nucl. Instrum. Methods Phys. Res., Sect. A 735, 304–313 (2014)

    Article  CAS  Google Scholar 

  86. Berger, M.J., Hubbell, J.: XCOM: photon cross sections on a personal computer, National Bureau of Standards, Washington, DC (USA). Cent. Radiat. (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aycan Şengul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şengul, A., Akgüngör, K. & Akkurt, I. Gamma-ray shielding properties of some dosimetric materials. J Aust Ceram Soc 59, 117–126 (2023). https://doi.org/10.1007/s41779-022-00817-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00817-z

Keywords

Navigation