Skip to main content
Log in

Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Five samples of hydroxyapatite (HAp) doped with praseodymium (Pr) at various amounts (2, 4, 6, 8, and 10 at.%) were synthesized by using the wet chemical route. The effects of Pr doping on the structural and thermal properties, as well as on the in vitro performance of HAp, were investigated experimentally. The band structure and density of states (DOS) of HAp were studied theoretically. Incorporation of Pr into the crystal lattice of HAp was observed. A gradual increase in the crystallite size, lattice parameter a, and unit cell volume was found, and a gradual decrease in the crystallinity degree was seen. Pr content from 2 to 10 at.% did not affect the thermal stability of HAp. The theoretical results showed that the bandgap energy of HAp decreased steadily from 3.82 to 1.32 eV with the adding of Pr, and the DOS was also affected by the Pr content. The cell viability tests showed that among all the as-synthesized samples, the best biocompatible properties were found for the sample which was doped with 10 at.% Pr, and the amount of Pr affected significantly the cell viability property of HAp. Except for the sample having 6 at.% Pr, all the remaining samples appeared to be potentially good candidates for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Šupová, M.: Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41(8), 9203–9231 (2015)

    Google Scholar 

  2. Zyman, Z.Z., Rokhmistrov, D.V., Loza, K.I.: Determination of the Ca/P ratio in calcium phosphates during the precipitation of hydroxyapatite using X-ray diffractometry. Process Appl Ceram. 7, 93–95 (2013)

    CAS  Google Scholar 

  3. Dorozhkin, S.: Calcium orthophosphates in nature, biology and medicine. Materials. 2(2), 399–498 (2009)

    CAS  Google Scholar 

  4. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)

    CAS  Google Scholar 

  5. Kaygili, O., Keser, S., Bulut, N., Ates, T.: Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B. 537, 63–67 (2018)

    CAS  Google Scholar 

  6. Abutalib, M., Yahia, I.: Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: characterization, gamma absorption coefficient, and bioactivity. Mater. Sci. Eng. C. 78, 1093–1100 (2017)

    CAS  Google Scholar 

  7. Yahia, I., Shkir, M., AlFaify, S., Ganesh, V., Zahran, H., Kilany, M.: Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications. Mater. Sci. Eng. C. 72, 472–480 (2017)

    CAS  Google Scholar 

  8. Shkir, M., Kilany, M., Yahia, I.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43(17), 14923–14931 (2017)

    CAS  Google Scholar 

  9. Fakharzadeh, A., Ebrahimi-Kahrizsangi, R., Nasiri-Tabrizi, B., Basirun, W.J.: Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram. Int. 43(15), 12588–12598 (2017)

    CAS  Google Scholar 

  10. Hidalgo-Robatto, B., López-Álvarez, M., Azevedo, A., Dorado, J., Serra, J., Azevedo, N., González, P.: Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf. Coat. Technol. 333, 168–177 (2018)

    CAS  Google Scholar 

  11. Baradaran, S., Nasiri-Tabrizi, B., Shirazi, F., Saber-Samandari, S., Shahtalebi, S., Basirun, W.: Wet chemistry approach to the preparation of tantalum-doped hydroxyapatite: dopant content effects. Ceram. Int. 44(3), 2768–2781 (2018)

    CAS  Google Scholar 

  12. Wei, L., Pang, D., He, L., Deng, C.: Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43(18), 16141–16148 (2017)

    CAS  Google Scholar 

  13. Vladescu, A., Padmanabhan, S., Azem, F.A., Braic, M., Titorencu, I., Birlik, I., Morris, M., Braic, V.: Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite. J. Mech. Behav. Biomed. Mater. 63, 314–325 (2016)

    CAS  Google Scholar 

  14. Robles-Águila, M., Reyes-Avendaño, J., Mendoza, M.: Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method. Ceram. Int. 43(15), 12705–12709 (2017)

    Google Scholar 

  15. Mokoena, P., Nagpure, I., Kumar, V., Kroon, R., Olivier, E., Neethling, J., Swart, H., Ntwaeaborwa, O.: Enhanced UVB emission and analysis of chemical states of Ca5 (PO4) 3OH: Gd3+, Pr3+ phosphor prepared by co-precipitation. J. Phys. Chem. Solids. 75(8), 998–1003 (2014)

    CAS  Google Scholar 

  16. Vasugi, G., Thamizhavel, A., Girija, E.: Luminescence studies of rare-earth doped and Co-doped hydroxyapatite. In: AIP Conf. Proc. 2012, vol. 1, pp. 267-268. AIP

  17. Liu, Z., Wang, Q., Yao, S., Yang, L., Yu, S., Feng, X., Li, F.: Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceram. Int. 40(2), 2613–2617 (2014)

    CAS  Google Scholar 

  18. Sun, Y., Yang, H., Tao, D.: Microemulsion process synthesis of lanthanide-doped hydroxyapatite nanoparticles under hydrothermal treatment. Ceram. Int. 37(7), 2917–2920 (2011)

    CAS  Google Scholar 

  19. Hui, J., Wang, X.: Luminescent, colloidal, F-substituted, hydroxyapatite nanocrystals. Chem. Eur. J. 17(25), 6926–6930 (2011)

    CAS  Google Scholar 

  20. Lu, Y., Wang, E.: Rare earth polyoxometalate complexes. In: Rare earth coordination chemistry: fundamentals and applications, pp. 193–223. Wiley, Singapore (2010)

    Google Scholar 

  21. Vidaud, C., Bourgeois, D., Meyer, D.: Bone as target organ for metals: the case of f-elements. Chem. Res. Toxicol. 25(6), 1161–1175 (2012)

    CAS  Google Scholar 

  22. Bhanjadeo, M.M., Subudhi, U.: Praseodymium promotes B–Z transition in self-assembled DNA nanostructures. RSC Adv. 9(8), 4616–4620 (2019)

    CAS  Google Scholar 

  23. Panichev, A.: Rare earth elements: review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Ach. Life Sci. 9(2), 95–103 (2015)

    Google Scholar 

  24. Zamani, H.A., Arvinfar, A., Rahimi, F., Imani, A., Ganjali, M.R., Meghdadi, S.: Praseodymium analysis in aqueous solution by Pr3+–PVC membrane sensor based on N, N′-bis (4-hydroxysalicylidene)-1-3-phenylenediamine. Mater. Sci. Eng. C. 31(2), 307–312 (2011)

    CAS  Google Scholar 

  25. Fricker, S.P.: The therapeutic application of lanthanides. Chem. Soc. Rev. 35(6), 524–533 (2006)

    CAS  Google Scholar 

  26. Wieszczycka, K., Staszak, K., Woźniak-Budych, M.J., Jurga, S.: Lanthanides and tissue engineering strategies for bone regeneration. Coord. Chem. Rev. 388, 248–267 (2019)

    CAS  Google Scholar 

  27. Desai, A.Y.: Fabrication and characterization of titanium-doped hydroxyapatite thin films. University of Cambridge (2007)

  28. Sastri, V.R., Perumareddi, J., Rao, V.R., Rayudu, G., Bünzli, J.-C.: Modern aspects of rare earths and their complexes. Elsevier (2003)

  29. Park, J.B.: Polymeric materials. In: Biomaterials, pp. 73–96. Springer (1979)

  30. Donglu, S.: Introduction to biomaterials. World Scientific (2005)

  31. Mansour, S., El-Dek, S., Dorozhkin, S., Ahmed, M.: Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J. Chem. 41(22), 13773–13783 (2017)

    CAS  Google Scholar 

  32. Yogamalar, R., Srinivasan, R., Vinu, A., Ariga, K., Bose, A.C.: X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149(43–44), 1919–1923 (2009)

    CAS  Google Scholar 

  33. Croft, M., Zhong, Z., Jisrawi, N., Zakharchenko, I., Holtz, R., Skaritka, J., Fast, T., Sadananda, K., Lakshmipathy, M., Tsakalakos, T.: Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction. Int. J. Fatigue. 27(10–12), 1408–1419 (2005)

    CAS  Google Scholar 

  34. Moghaddam, H.M., Nasirian, S.: Dependence of activation energy and lattice strain on TiO2 nanoparticles? Nanosci. Meth. 1(1), 201–212 (2012)

    Google Scholar 

  35. Venkateswarlu, K., Bose, A.C., Rameshbabu, N.: X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Physica B. 405(20), 4256–4261 (2010)

    CAS  Google Scholar 

  36. Cullity, B.: Elements of X-ray diffraction 2nd edition. Addision-Wesley Pub. Co. Inc., CA, USA 197, 356 (1978)

  37. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20(14–15), 2377–2387 (2000)

    CAS  Google Scholar 

  38. Kaygili, O., Tatar, C.: The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol–gel method. J. Sol-Gel Sci. Technol. 61(2), 296–309 (2012)

    CAS  Google Scholar 

  39. Jesser, W., Kuhlmann-Wilsdorf, D.: On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates. Phys. Status Solidi B. 19, 95–105 (1967)

    CAS  Google Scholar 

  40. Kaygili, O., Dorozhkin, S.V., Keser, S.: Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method. Mater. Sci. Eng. C. 42, 78–82 (2014)

    CAS  Google Scholar 

  41. Lijuan, X., Liuyun, J., Lixin, J., Chengdong, X.: Synthesis of Mg-substituted hydroxyapatite nanopowders: effect of two different magnesium sources. Mater. Lett. 106, 246–249 (2013)

    Google Scholar 

  42. Trommer, R., Santos, L., Bergmann, C.: Alternative technique for hydroxyapatite coatings. Surf. Coat. Technol. 201(24), 9587–9593 (2007)

    CAS  Google Scholar 

  43. Ignjatović, N.L., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M.G., Škapin, S., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S., Marković, S., Lazarević, M.M., Uskoković, D.P.: Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci. Rep. 9, 1635 (2019)

    Google Scholar 

  44. Slepko, A., Demkov, A.A.: First-principles study of the biomineral hydroxyapatite. Phys. Rev. B. 84, 134108 (2011)

    Google Scholar 

  45. Avakyan, L.A., Paramonova, E.V., Coutinho, J., Öberg, S., Bystrov, V.S., Bugaev, L.A.: Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Appl. Phys. 148, 154706 (2018)

    Google Scholar 

  46. Mariappan, A., Pandi, P., Balasubramanian, N., Rajeshwara Palanichamy, R., Neyvasagam, K.: Structural, optical and antimicrobial activity of copper and zinc doped hydroxyapatite nanopowders using sol-gel method. Mech. Mater. Sci. Eng. 9, (2017). https://doi.org/10.2412/mmse.1.46.162

  47. Bystrov, V.S., Piccirillo, C., Tobaldi, D.M., Castro, P.M.L., Coutinho, J., Kopyl, S., Pullar, R.C.: Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl. Catal. B-Environ. 196, 100–107 (2016)

    CAS  Google Scholar 

  48. Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drücker, H., Vogt, C., Hort, N.: Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 6(5), 1834–1842 (2010)

    CAS  Google Scholar 

  49. Zhang, M., Ma, S., Xu, K., Chu, P.K.: Corrosion resistance of praseodymium-ion-implanted TiN coatings in blood and cytocompatibility with vascular endothelial cells. Vacuum. 117, 73–80 (2015)

    CAS  Google Scholar 

  50. İnce, T., Kaygili, O., Tatar, C., Bulut, N., Koytepe, S., Ates, T.: The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method. Ceram. Int. 44(12), 14036–14043 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Management Unit of Scientific Research projects of Firat University (FÜBAP) (Project Number: FF.18.26). This study was derived from Riyadh Saeed Agid’s MSc thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Kaygili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agid, R.S., Kaygili, O., Bulut, N. et al. Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. J Aust Ceram Soc 56, 1501–1513 (2020). https://doi.org/10.1007/s41779-020-00495-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00495-9

Keywords

Navigation