Skip to main content
Log in

The effects of graphene nanoplatelet addition to in situ compacted alumina nanocomposites using ultra-high frequency induction sintering system

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this study was to compact and sinter in situ graphene nanoplatelets (GNPs) with the addition of alumina (Al2O3) nanoparticles to form nanocomposites by using an ultra-high frequency induction sintering system with the assistance of applying a uniaxial load. To obtain the effect of the addition of GNPs to the compaction and to the mechanical properties of the nanocomposite, 1 to 5 wt.% GNPs was mixed to alumina nanoparticles by high-speed ball milling for 2 h at 350 rpm. Mixed Al2O3-GNP compositions were compacted in situ and sintered in a graphite die by induction-assisted heating at 1650 °C for 20 min with a uniaxial load applied in a vacuum chamber. The microstructure of as-sintered nanocomposites was observed using a scanning electron microscope (SEM) before and after thermal etching. Hardness and wear tests were carried out to determine mechanical properties. The results were compared with the properties of a pure alumina nanocompact. It was found that minimum grain size and maximum density, hardness, and wear resistance can be obtained by the addition of 1 wt.% GNPs to alumina nanoparticles. Higher amounts of GNP addition gradually decreased the density, hardness, and wear rates and increased the grain size of the alumina matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gonzalez, C.F.G., Smirnov, A., Centeno, A., Fernandez, A., Alonso, B., Rocha, V.G., Torrecillas, R., Zurutuza, A., Bartolome, J.F.: Wear behavior of graphene/alumina composite. Ceram. Int. 41, 7434–7438 (2015). https://doi.org/10.1016/j.ceramint.2015.02.061

    Article  CAS  Google Scholar 

  2. Rodriguez-Suarez, T., Bartolomé, J.F., Smirnov, A., Lopez-Esteban, S., Dıaz, L.A., Torrecillas, R., Moya, J.S.: Electroconductive alumina–TiC–Ni nanocomposites obtained by spark plasma sintering. Ceram. Int. 37(5), 1631–1636 (July 2011). https://doi.org/10.1016/j.ceramint.2011.01.033

    Article  CAS  Google Scholar 

  3. Qin, Y., Zhao, J., Huang, K., Zulkipli, M., Hijji, H., Yang, Y., Wu, M., Yin, D.: Forming of miniature components from powders by combining field-activated sintering and micro-forming. Proc Eng. 207, 1212–1217 (2017). https://doi.org/10.1016/j.proeng.2017.10.872

    Article  Google Scholar 

  4. Drexler, K. Eric.: Engines of creation: the coming era of nanotechnology. Doubleday. ISBN 0-385-19973-2 (1986)

  5. Drexler, K.E.: Nanosystems: molecular machinery, manufacturing, and computation. John Wiley & Sons. ISBN 0-471-57547-X., New York (1992)

    Google Scholar 

  6. Mnyusiwalla, A., Daar, A.S., Singer, P.A.: ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology. 14, (2013). https://doi.org/10.1088/0957-4484/14/3/201

    Article  Google Scholar 

  7. J. Lawrence, A. Ostendorf, A. Neumeister, S. Dudziak, S. Passinger, J. Stampfl,: Chapter 20: micro- and nano-parts generated by laser-based solid freeform fabrication, Advances in Laser Materials Processing (Second Edition), 2018, Pages 595–633. https://doi.org/10.1016/B978-0-08-101252-9.00020-0

    Chapter  Google Scholar 

  8. Yin, Z., Huang, C., Zou, B., Liu, H., Zhu, H., Wang, J.: Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material. Mater Sci Eng A. 577, 9–15 (2013). https://doi.org/10.1016/j.msea.2013.04.033

    Article  CAS  Google Scholar 

  9. Cheng, Y., Zhang, Y., Wan, T., Yin, Z., Wang, J.: Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering. Mater Sci Eng A. 680, 190–196 (2017). https://doi.org/10.1016/j.msea.2016.10.100

    Article  CAS  Google Scholar 

  10. Rahaman, M.N., Yao, A.Y., Bal, B.S., Garino, J.P., Ries, M.D.: Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 90(7), 1965–1988 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x

    Article  CAS  Google Scholar 

  11. Borsa, C.E., Jones, N.M.R., Todd, R.I.: Influence of processing on the microstructural development and flexure strength of Al2O3/SiC nanocomposites. J. Eur. Ceram. Soc. 17, 865–872 (1997). https://doi.org/10.1016/S0955-2219(96)00188-4

    Article  CAS  Google Scholar 

  12. Chen, W.H., Lin, H.T., Nayak, P.K., Chang, M.P., Huang, J.L.: Sintering behavior and mechanical properties of WC-Al2O3 composites prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 48, 414–417 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.016

    Article  CAS  Google Scholar 

  13. Broniszewski, K., Wozniak, J., Czechowski, K., Jaworska, L., Olszyna, A.: Al2O3–V cutting tools for machining hardened stainless steel. Ceram. Int. 41, 14190–14196 (2015). https://doi.org/10.1016/j.ceramint.2015.07.044

    Article  CAS  Google Scholar 

  14. Broniszewski, K., Wozniak, J., Czechowski, K., Jaworski, L., Olszyna, A.: Al2O3–Mo cutting tools for machining hardened stainless steel. Wear. 303, 87–91 (2013). https://doi.org/10.1016/j.wear.2013.03.002

    Article  CAS  Google Scholar 

  15. Wozniak, Y.T., Trzaska, M., Cieslak, G., Cygan, T., Kostecki, M., Olszyna, A.: Preparation and mechanical properties of alumina composites reinforced with nickel-coated graphene. Ceram. Int. 42, 8597–8603 (2016). https://doi.org/10.1016/j.ceramint.2016.02.089

    Article  CAS  Google Scholar 

  16. Porwal, H., Tatarko, P., Grasso, S., Hu, C., Boccaccini, A.R., Dlouhý, I., Reece, M.J.: Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nanoplatelets. Sci. Technol. Adv. Mater. 1–10 (2013). https://doi.org/10.1088/1468-6996/14/5/055007

    Article  Google Scholar 

  17. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  18. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  19. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  20. Chen, Y.F., Bi, J.Q., Yin, C.L., You, G.L.: Microstructure and fracture toughness of graphene nanosheets/alumina composites. Ceram. Int. 40, 13883–13889 (2014). https://doi.org/10.1016/j.ceramint.2014.05.107

    Article  CAS  Google Scholar 

  21. Channei, D., Nakaruk, A., Phanichphant, S.: Controlled oxidative aging time of graphite/graphite oxide to graphene oxide in aqueous media. J. Aust. Ceram. Soc. 1–6 (2017). https://doi.org/10.1007/s41779-017-0130-y

    Article  Google Scholar 

  22. Gholami, F., Ismail, S., Noor, A.F.M.: Development of carboxylated multi-walled carbon nanotubes and bovine serum albumin reinforced hydroxyapatite for bone substitute applications. J. Aust. Ceram. Soc. 53, 117 (2017). https://doi.org/10.1007/s41779-016-0016-4

    Article  CAS  Google Scholar 

  23. Liu, J., Yan, H., Jiang, K.: Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 39, 6215–6221 (2013). https://doi.org/10.1016/j.ceramint.2013.01.041

    Article  CAS  Google Scholar 

  24. Fan, Y., Estili, M., Igarashi, G., Jiang, W., Kawasaki, A.: The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. J. Eur. Ceram. Soc. 34, 443–451 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.035

    Article  CAS  Google Scholar 

  25. Nieto, A., Huang, L., Han, Y.H., Schoenung, J.M.: Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram. Int. 41, 5926–5936 (2015). https://doi.org/10.1016/j.ceramint.2015.01.027

    Article  CAS  Google Scholar 

  26. Centeno, A., Rocha, V.G., Alonso, B., Fernandez, A., Gutierrez-Gonzalez, C.F., Torrecillas, R., Zurutuza, A.: Graphene for tough and electrocontuctive alumina ceramics. J. Eur. Ceram. Soc. 33, 3201–3210 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.07.007

    Article  CAS  Google Scholar 

  27. Yoo, J.Y., Shon, I.J., Cho, B.H., Lee, K.T.: Fabrication and characterization of a Ni-YSZ anode support using high-frequency induction heated sintering (HFIHS). Ceram. Int. 37, 2569–2574 (2011). https://doi.org/10.1016/j.ceramint.2011.04.002

    Article  CAS  Google Scholar 

  28. Sevilay, Ç.: One phase induction heating system analysis and design. Master’s Thesis, Pamukkale University, Institute of Science and Technology, Denizli/Turkey, (2005)

  29. Ahmad, I., Islam, M., Abdo, H.S., Subhani, T., Khalil, K.A., Almajid, A.A., Yazdani, B., Zhu, Y.: Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater. Des. 88, 1234–1243 (2015). https://doi.org/10.1016/j.matdes.2015.09.125

    Article  CAS  Google Scholar 

  30. Nampi, P.P., Kume, S., Hotta, Y., Watari, K.: Effect of surface roughness on grain growth and sintering of alumina. Bull. Mater. Sci. 34(4), 799–804 (July 2011). https://doi.org/10.1007/s12034-011-0197-y

    Article  CAS  Google Scholar 

  31. Kim, W., Oh, H.-S., Shon, I.-J.: The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. Int. J. Refract. Met. Hard Mater. 48, 376–381 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research in this paper was supported by The Scientific and Technological Research Council of Turkey (Project Number: 214M414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Çavdar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuşoğlu, İ.M., Çavdar, U. & Altintaş, A. The effects of graphene nanoplatelet addition to in situ compacted alumina nanocomposites using ultra-high frequency induction sintering system. J Aust Ceram Soc 56, 233–241 (2020). https://doi.org/10.1007/s41779-019-00356-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00356-0

Keywords

Navigation