Skip to main content

Advertisement

Log in

The effect of alumina additive and sintering temperature on the microstructural, physical, mechanical, and bioactivity properties of hydroxyapatite–alumina composites

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of alumina (Al2O3) additive and sintering temperature on the microstructural, physical, mechanical, and in vitro bioactivity properties of hydroxyapatite (HA). The composites consisting of 2.5 and 5 wt% Al2O3 and monolithic HA were uniaxially pelleted at 350 MPa with the size of 11 and 11 mm2 and sintered at five different temperatures ranging from 900 to 1300 °C for 4 h. A series of thermal analysis methods and tests were used to evaluate both phase changes that occurred during sintering and the physical/mechanical properties of the sintered samples. The bioactivity property of the samples having the highest compressive strength value was investigated in a simulated body fluid (SBF) solution for 3, 7, 15, and 30 days. Results showed that HA without Al2O3 had started to decompose at 1200 °C, and the addition of Al2O3 led to the reduction of decomposition temperature from 1200 to 900 °C. However, the main phase was HA for all the sintered samples. The highest mechanical strength values were 130.20 ± 6.22, 60.27 ± 9.93, and 0.96 ± 0.05 MPa m1/2 for compressive strength, three-point bending strength, and fracture toughness, respectively, for monolithic HA when it was sintered at 1100 °C. All of these mechanical strength values of monolithic HA were improved higher than the rate of 60% as the grain growth of HA was inhibited by the addition of Al2O3. The highest mechanical strength values of HA–Al2O3 composites were obtained for the samples sintered at 1200 °C when the densification rate reached 90%. In vitro investigations showed that Al2O3 led to a reduction in the in vitro bioactivity of HA, but it could be used in the human body since its surface is coated by apatite layers when in vitro time reached 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hench, L.L.: Medical materials for the next millennium. MRS Bull. 24(5), 13–20 (1999)

    CAS  Google Scholar 

  2. Kamitakahara, M., Ohtsuki, C., Miyazaki, T.: Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 23, 197–212 (2008)

    CAS  Google Scholar 

  3. Bellucci, D., Desogus, L., Montinaro, S., Orrù, R., Cao, G., Cannillo, V.: Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair. J. Eur. Ceram. Soc. 37, 1723–1733 (2017)

    CAS  Google Scholar 

  4. Prokopiev, O., Sevostianov, I.: Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A. 431, 218–227 (2006)

    Google Scholar 

  5. Uysal, I., Severcan, F., Tezcaner, A., Evis, Z.: Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog. Nat. Sci.: Mater. Int. 24, 340–349 (2014)

    CAS  Google Scholar 

  6. Ramesh, S., Natasha, A.N., Tan, C.Y., Bang, L.T., Ramesh, S., Ching, C.Y., Chandran, H.: Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 42, 7824–7829 (2016)

    CAS  Google Scholar 

  7. Metsger, D.S., Rieger, M.R., Foreman, D.W.: Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramics. J. Mater. Sci. Mater. Med. 10, 9–17 (1999)

    CAS  Google Scholar 

  8. Oktar, F.N., Göller, G.: Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram. Int. 28, 617–621 (2002)

    CAS  Google Scholar 

  9. Mobasherpour, I., Hashjin, M.S., Toosi, S.S.R., Kamachali, R.D.: Effect of the addition ZrO2-Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram. Int. 35, 1569–1574 (2009)

    CAS  Google Scholar 

  10. Lee, K.T., Cha, S.I., Kim, K.T., Lee, K.H., Hong, S.H.: Sintering behavior, microstructural evolution, and mechanical properties of ultra-fine grained alumina synthesized via in-situ spark plasma sintering. Ceram. Int. 42, 4290–4297 (2016)

    CAS  Google Scholar 

  11. Halim, T., Burgett-Moreno, M., Donaldson, T., Clarke, I.C.: Third-body wear damage produced in CoCr surfaces by hydroxyapatite and alumina ceramic debris: a 10-cycle metal-on-metal simulator study. Reconstr. Rev. 5(4), 33–39 (2015)

    Google Scholar 

  12. Berger, J., Roch, T., Pistillo, N., Lasagni, A.F.: Multiple-beam laser patterning on aluminum oxide, zirconium oxide, and hydroxyapatite ceramic materials using a microlens array. J. Laser Appl. 28(4), 042003-1–042003-8 (2016)

    Google Scholar 

  13. Kim, C.Y., Jee, S.S.: Hydroxyapatite formation on bioactive-glazed alumina. J. Eur. Ceram. Soc. 23, 1803–1811 (2003)

    CAS  Google Scholar 

  14. Acchar, W., Cairo, C.A.: The influence of (Ti,W)C and NbC on the mechanical behavior of alumina. Mater. Res. 9(2), 171–174 (2006)

    CAS  Google Scholar 

  15. Ibrahim, M.Z., Sarhan, A.A.D., Yusuf, F., Hamdi, M.: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants. J. Alloys Compd. 714, 636–667 (2017)

    CAS  Google Scholar 

  16. Bandyopadhyay, A., Bernard, S., Xue, W., Bose, S.: Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89(9), 2675–2688 (2006)

    CAS  Google Scholar 

  17. Kalmodia, S., Goenka, S., Laha, T., Lahiri, D., Basu, B., Balani, K.: Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite-aluminum oxide-carbon nanotube composite. Mater. Sci. Eng. C. 30, 1162–1169 (2010)

    CAS  Google Scholar 

  18. Jun, Y.K., Kim, W.H., Kweon, O.K., Hong, S.H.: The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials. 24, 3731–3739 (2003)

    CAS  Google Scholar 

  19. Fujita, H., Kudo, T., Kanetaka, H., Miyazaki, T., Hashimoto, M., Kawashita, M.: Adsorption of laminin on hydroxyapatite and alumina and the MC3T3-E1 cell response. ACS Biomater. Sci. Eng. 2, 1162–1168 (2016)

    CAS  Google Scholar 

  20. ASTM F 1185-88 (1993). Standard Specification for Composition of Ceramic Hydroxylapatite for Surgical Implants, American Society for Testing and Materials, Conshohocken

  21. Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G.: Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3, 961–969 (2007)

    CAS  Google Scholar 

  22. Ha, J.S.: Fabrication and characterization of hydroxyapatite/mullite and tricalcium phosphate/Al2O3 composites containing 30 wt% of bioactive components. J. Korean Ceram. Soc. 52(5), 374–379 (2015)

    CAS  Google Scholar 

  23. Ji, H., Marquis, P.M.: Preparation and characterization of Al2O3 reinforced hydroxyapatite. Biomaterials. 13, 744–748 (1992)

    CAS  Google Scholar 

  24. British Standard Non-Metallic Materials for Surgical Implants. Part 2: Specifications for Ceramic Materials Based on Alumina, BS 7253: Part 2: 1990 ISO 6474-1981

  25. Sato, K., Yugami, H., Hashida, T.: Effect of rare-earth oxides on fracture properties of ceria ceramics. J. Mater. Sci. 39, 5765–5770 (2004)

    CAS  Google Scholar 

  26. Muralithran, G., Ramesh, S.: The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int. 26, 221–230 (2000)

    CAS  Google Scholar 

  27. Majling, J., Znáik, P., Palová, A., Stevĭk, S., Kovalĭk, S., Agrawal, D.K., Roy, R.: Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 12(1), 198–202 (1997)

    CAS  Google Scholar 

  28. Rahimiana, M., Ehsani, N., Parvin, N., Reza Baharvandi, H.: The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387–5393 (2009)

    Google Scholar 

  29. Niihara, K.: Indentation microfracture of ceramics—its application and problems. J. Ceram. Soc. Jpn. 20, 12–18 (1985)

    Google Scholar 

  30. ASTM C1161-94: Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Annual Book of ASTM Standards, USA (1996)

    Google Scholar 

  31. Kokubo, T., Yamamuro, T., Hench, L.L., Wilson, J.: Handbook on Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, vol. 1. CRC, Boca Raton (1990)

    Google Scholar 

  32. Senamaud, N., Bemache-Assollant, D., Champion, E., Heughebaert, M., Rey, C.: Calcination and sintering of hydroxyfluorapatite powders. Solid State Ionics. 101-103, 1357–1362 (1997)

    CAS  Google Scholar 

  33. Dorozhkin, S.V.: Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 42, 6529–6554 (2016)

    CAS  Google Scholar 

  34. Safina, M.N., Safronova, T.V., Lukin, E.S.: Calcium phosphate based ceramic with a resorbable phase and low sintering temperature. Glas. Ceram. 64(7–8), 238–243 (2007)

    CAS  Google Scholar 

  35. Medveckŷ, Ľ., Štulajterova, R., Briančin, J.: Study of controlled tetracycline release from porous calcium phosphate/polyhydroxybutyrate composites. Chem. Pap. 61(6), 477–484 (2007)

    Google Scholar 

  36. Barros, B.S., de Oliveira, R.S., Kulesza, J., Melo, V.R.M., Melo, D.M.A., Alves, S.: Ca3-xAl2O6:xEu3+ nanophosphors: fast synthesis and photophysical properties. J. Phys. Chem. Solids. 78, 90–94 (2015)

    CAS  Google Scholar 

  37. Zhang, D., Pan, X., Yu, H., Zhai, Y.: Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage. J. Mater. Sci. Technol. 31, 1244–1250 (2015)

    CAS  Google Scholar 

  38. Mercury, J.M.R., de Aza, A.H., Pena, P.: Synthesis of CaAl2O4 from powders: particle size effect. J. Eur. Ceram. Soc. 25, 3269–3279 (2005)

    Google Scholar 

  39. de Oliveira, I.R., de Andrade, T.L., Parreira, R.M., Jacobovitz, M., Pandolfelli, V.C.: Characterization of calcium aluminate cement phases when in contact with simulated body fluid. Mater. Res. 18(2), 382–389 (2015)

    Google Scholar 

  40. Yuan, X., Xu, Y.B., He, Y.: Synthesis of Ca3Al2O6 via citric acid precursor. Mater. Sci. Eng. A. 447, 142–145 (2007)

    Google Scholar 

  41. Steele, F.A., Davey, W.P.: The crystal structure of tricalcium aluminate. J. Am. Chem. Soc. 51(8), 2283–2293 (1929)

    CAS  Google Scholar 

  42. Mondal, P., Jeffery, J.W.: The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr. B. 31, 689–697 (1975)

    Google Scholar 

  43. Liu, W., Chang, J.: Setting properties and biocompability of dicalcium silicate with varying additions of tricalcium aluminate. J. Biomater. Appl. 27(2), 171–178 (2011)

    Google Scholar 

  44. Yuan, X., Xu, Y., He, Y.: Synthesis of CaAl4O7 via citric acid precursor. J. Alloys Compd. 441, 251–254 (2007)

    CAS  Google Scholar 

  45. Suzuki, Y., Ohji, T.: Anisotropic thermal expansion of calcium dialuminate (CaAl4O7) simulated by molecular dynamics. Ceram. Int. 30, 57–61 (2004)

    CAS  Google Scholar 

  46. Palchesko, R.N., McGowan, K.A., Gawalt, E.S.: Surface immobilization of active vancomycin on calcium aluminum oxide. Mater. Sci. Eng. C. 31, 637–642 (2011)

    CAS  Google Scholar 

  47. Palchesko, R.N., Buckholtz, G.A., Romeo, J.D., Gawalt, E.S.: Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials. Mater. Sci. Eng. C. 40, 398–406 (2014)

    CAS  Google Scholar 

  48. Lazic, B., Krüger, H., Kahlenberg, V., Konzett, J., Kaindl, R.: Incommensurate structure of Ca2Al2O5 at high temperatures—structure investigation and Raman spectroscopy. Acta Crystallogr. B. 64(4), 417–425 (2008)

    CAS  Google Scholar 

  49. Kahlenberg, V., Fischer, R.X., Shaw, C.S.J.: Rietveld analysis of dicalcium aluminate (Ca2Al2O5)—a new high pressure phase with the Brownmillerite-type structure. Am. Mineral. 85, 1061–1065 (2000)

    CAS  Google Scholar 

  50. Kojitani, H., Wakabayashi, Y., Tejima, Y., Kato, C., Haraguchi, M., Akaogi, M.: High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskite-related compounds with oxygen defects in the Ca2Si2O6–Ca2Al2O5 join. Phys. Earth Planet. Inter. 173, 349–353 (2009)

    CAS  Google Scholar 

  51. Guidara, A., Chaari, K., Bouaziz, J.: Elaboration and characterization of alumina-fluorapatite composites. J. Biomater. Nanobiotechnol. 2, 103–113 (2011)

    CAS  Google Scholar 

  52. Xu, P., Zhou, Z., Zhao, C., Cheng, Z.: Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today. 259, 347–353 (2016)

    CAS  Google Scholar 

  53. Chen, X., Yang, L., Zhou, Z., Cheng, Z.: Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming. Chem. Eng. Sci. 163, 114–122 (2017)

    CAS  Google Scholar 

  54. Cao, R., Zhang, F., Cao, C., Yu, X., Liang, A., Guo, S., Xue, H.: Synthesis and luminescence properties of CaAl2O4:Mn4+ phosphor. Opt. Mater. 38, 53–56 (2014)

    CAS  Google Scholar 

  55. Cui, T., Ma, P., Sheng, Y., Zheng, K., Zhou, X., Xu, C., Zou, H., Song, Y.: Preparation of CaAl2O4:Eu2+, Nd3+ and SrAl2O4:Eu2+, Dy3+ long after glow luminescent materials using oil shale ash. Opt. Mater. 67, 84–90 (2017)

    CAS  Google Scholar 

  56. Szczerba, J., Madej, D., Śniezek, E., Prorok, R.: The application of DTA and TG methods to investigate the non-crystalline hydration products of CaAl2O4 and Ca7ZrAl6O18 compounds. Thermochim. Acta. 567, 40–45 (2013)

    CAS  Google Scholar 

  57. Rodríguez, M.A., Aguilar, C.L., Aghayan, M.A.: Solution combustion synthesis and sintering behavior of CaAl2O4. Ceram. Int. 38, 395–399 (2012)

    Google Scholar 

  58. Iftekhar, S., Grins, J., Svensson, G., Lööf, J., Jarmar, T., Botton, G.A., Andrei, C.M., Engqvist, H.: Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures. J. Eur. Ceram. Soc. 28, 747–756 (2008)

    CAS  Google Scholar 

  59. Kumar, P.N., Ferreira, J.M.F., Kannan, S.: Phase transition mechanisms involved in the formation of structurally stable β-Ca3(PO4)2-α-Al2O3 composites. J. Eur. Ceram. Soc. 37, 2953–2963 (2017)

    Google Scholar 

  60. Lööf, J., Svahn, F., Jarmar, T., Engqvist, H., Pameijer, C.H.: A comparative study of the bioactivity of three materials for dental applications. Dent. Mater. 24, 653–659 (2008)

    Google Scholar 

  61. Acuña-Gutiérrez, I.O., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Cortés-Hernández, D.A., Saldívar-Ramírez, M.M.G., Reséndiz-Hernández, P.J., Zugasti-Cruz, A.: Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications. Mater. Sci. Eng. C. 70, 357–363 (2017)

    Google Scholar 

  62. Viswanath, B., Ravishankar, N.: Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scr. Mater. 55, 863–866 (2006)

    CAS  Google Scholar 

  63. Evis, Z., Doremus, R.H.: Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater. Res. Bull. 43, 2643–2651 (2008)

    CAS  Google Scholar 

  64. Zhang, C., Zhang, X., Liu, C., Sun, K., Yuan, J.: Nano-alumina/hydroxyapatite composite powders prepared by in-situ chemical precipitation. Ceram. Int. 42, 279–285 (2016)

    CAS  Google Scholar 

  65. Radha, G., Balakumar, S., Venkatesan, B., Vellaichamy, E.: Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite-alumina nanocomposites. Mater. Sci. Eng. C. 50, 143–150 (2015)

    CAS  Google Scholar 

  66. Epure, L.M., Dimitrievska, S., Merhi, Y., Yahia, L.H.: The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation. J. Biomed. Mater. Res. A. 83A(4), 1009–1023 (2007)

    CAS  Google Scholar 

  67. Evis, Z.: Al+3 doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. Jpn. 114(11), 1001–1004 (2006)

    CAS  Google Scholar 

  68. Ali, M.M., Agarwaland, S.K., Handoo, S.K.: Diffusion studies information and sintering of CaAl2O4 and BaAl2O4: a comparative evaluation. Cem. Concr. Res. 27(7), 979–982 (1997)

    CAS  Google Scholar 

  69. Zyman, Z., Tkachenko, M., Epple, M., Polyakov, M., Naboka, M.: Magnesium-substituted hydroxyapatite ceramics. Mater. Werkst. 37(6), 474–477 (2006)

    CAS  Google Scholar 

  70. Guo, H., Khor, K.A., Boey, Y.C., Miao, X.: Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials. 24, 667–675 (2003)

    CAS  Google Scholar 

  71. Li, S., Izui, H., Okano, M.: Densification, microstructure, and behavior of hydroxyapatite ceramics sintered by using spark plasma sintering. J. Eng. Mater. Technol. 130, 031012-1–031012-7 (2008)

    Google Scholar 

  72. Halouani, R., Bernache-Assolant, D., Champion, E., Ababou, A.: Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 5, 563–568 (1994)

    CAS  Google Scholar 

  73. Aizawa, M., Hanazawa, T., Itatani, K., Howell, F.S., Kishioka, A.: Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J. Mater. Sci. 34, 2865–2873 (1992)

    Google Scholar 

  74. Yoshida, H., Kim, B.N., Son, H.W., Han, Y.H., Kim, S.: Superplastic deformation of transparent hydroxyapatite. Scr. Mater. 69, 155–158 (2013)

    CAS  Google Scholar 

  75. Gu, Y.W., Loh, N.H., Khor, K.A., Tor, S.B., Cheang, P.: Spark plasma sintering of hydroxyapatite powders. Biomaterials. 23, 37–43 (2002)

    CAS  Google Scholar 

  76. Lopes, M.A., Monteiro, F.J., Santos, J.D.: Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength. J. Biomed. Mater. Res. A. 48(5), 734–740 (1999)

    CAS  Google Scholar 

  77. Wang, T., Dorner-Reisel, A., Müller, E.: Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J. Eur. Ceram. Soc. 24, 693–698 (2004)

    CAS  Google Scholar 

  78. Ślósarczyk, A., Klisch, M., Błaẑewicz, M., Piekarczyk, J., Stobierski, L., Rapacz-Kmita, A.: Hot pressed hydroxyapatite-carbon fibre composites. J. Eur. Ceram. Soc. 20, 1397–1402 (2000)

    Google Scholar 

  79. Fanovich, M.A., Lȯpez, J.M.P.: Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatite with different Ca/P ratios. J. Mater. Sci. Mater. Med. 9, 53–60 (1998)

    CAS  Google Scholar 

  80. Zayman, Z.Z., Ivanov, I.G., Glushko, V.I.: Possibilities for strengthening hydroxyapatite ceramics. J. Biomed. Mater. Res. 46(1), 73–79 (1999)

    Google Scholar 

  81. Raynaud, S., Champion, E., Bernache-Assollant, D.: Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials. 23, 1073–1080 (2002)

    CAS  Google Scholar 

  82. Arita, I.H., Wilkinson, D.S., Mondragón, M.A., Castaño, V.M.: Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials. 16, 403–408 (1995)

    CAS  Google Scholar 

  83. Deville, S., Saiz, E., Tomsia, A.P.: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 27, 5480–5489 (2006)

    CAS  Google Scholar 

  84. Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K.: Sintering effects on the strength of hydroxyapatite. Biomaterials. 16, 409–415 (1995)

    CAS  Google Scholar 

  85. Miao, X., Chen, Y., Guo, H., Khor, K.A.: Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Int. 30, 1793–1796 (2004)

    CAS  Google Scholar 

  86. Wang, X., Fan, H., Xiao, Y., Zhang, X.: Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett. 60, 455–458 (2006)

    CAS  Google Scholar 

  87. Kahlenberg, V., Fischer, R.X., Shaw, C.S.J.: High-pressure Ca4Al6O13: an example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am. Mineral. 85, 1492–1496 (2000)

    CAS  Google Scholar 

  88. Silva, V.V., Lameiras, F.S., Domingues, R.Z.: Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos. Sci. Technol. 61, 301–310 (2001)

    CAS  Google Scholar 

  89. Ślósarczyk, A., Białoskórski, J.: Hardness and fracture toughness of dense calcium-phosphate-based materials. J. Mater. Sci. Mater. Med. 9, 103–108 (1998)

    Google Scholar 

  90. Hoepfner, T.P., Case, E.D.: The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Int. 29, 699–706 (2003)

    CAS  Google Scholar 

  91. Chiba, A., Kimura, S., Raghukandan, K., Morizono, Y.: Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction. Mater. Sci. Eng. A. 350, 179–183 (2003)

    Google Scholar 

  92. Lee, B.T., Shin, N.Y., Han, J.K., Song, H.Y.: Microstructures and fracture characteristics of spark plasma-sintered Hap-5 vol.% Ag composites. Mater. Sci. Eng. A. 429, 348–352 (2006)

    Google Scholar 

  93. Ruan, J.M., Zou, J.P., Zhou, Z.C.: Hydroxyapatite-316L stainless steel fibre composite biomaterials fabricated by hot pressing. Powder Metall. 49(1), 62–65 (2006)

    CAS  Google Scholar 

  94. Khalil, K.A., Kim, H.Y., Kim, S.W., Kim, K.W.: Observation of toughness improvement of the hydroxyapatite bioceramics densified using high-frequency induction heat sintering. Int. J. Appl. Ceram. Technol. 4(1), 30–37 (2007)

    CAS  Google Scholar 

  95. Bakshi, S.R., Musaramthota, V., Lahiri, D., Singh, V., Seal, S., Agarwal, A.: Spark plasma sintered tantalum carbide: effect of pressure and nano-boron carbide addition on microstructure and mechanical properties. Mater. Sci. Eng. A. 528, 1287–1295 (2011)

    Google Scholar 

  96. Thangamani, N., Chinnakali, K., Gnanam, F.D.: The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Int. 28, 355–362 (2002)

    CAS  Google Scholar 

  97. Kobayashi, S., Kawai, W., Wakayama, S.: The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 17, 1089–1093 (2006)

    CAS  Google Scholar 

  98. Veljović, D., Vuković, G., Steins, I., Palcevskis, E., Uskoković, P.S., Petrović, R., Janaćković, D.: Improvement of the mechanical properties of spark plasma sintered HAp bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes. Sci. Sinter. 45, 233–243 (2013)

    Google Scholar 

  99. Gautier, S., Champion, E., Bernache-Assollant, D.: Toughening characterization in alumina platelets-hydroxyapatite matrix composites. J. Mater. Sci. Mater. Med. 10, 533–540 (1999)

    CAS  Google Scholar 

  100. Martin, R.I., Brown, P.W.: Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci. Mater. Med. 6, 138–143 (1995)

    CAS  Google Scholar 

  101. Will, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., Horch, R., Greil, P.: Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J. Mater. Sci. Mater. Med. 19, 2781–2790 (2008)

    CAS  Google Scholar 

  102. Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials. 22, 583–588 (2001)

    Google Scholar 

  103. Hannora, A.E.: Preparation and characterization of hydroxyapatite/alumina nanocomposites by high-energy vibratory ball milling. J. Ceram. Sci. Technol. 5(4), 293–298 (2014)

    Google Scholar 

  104. Gu, Y.W., Khor, K.A., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials. 25, 4127–4134 (2004)

    CAS  Google Scholar 

  105. Yasuda, H.Y., Mahara, S., Terashita, N., Umakoshi, Y.: Preparation of porous hydroxyapatite/α-tricalcium phosphate composites by a colloidal process. Mater. Trans. 43(6), 1332–1335 (2002)

    CAS  Google Scholar 

  106. Chumnanklang, R., Panyathanmaporn, T., Sitthiseripratip, K., Suwanprateeb, J.: 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength. Mater. Sci. Eng. C. 27, 914–921 (2007)

    CAS  Google Scholar 

  107. Kothapalli, C., Wei, M., Vasiliev, A., Shaw, M.T.: Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater. 52, 5655–5663 (2004)

    CAS  Google Scholar 

  108. Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezhaad, S.K.: Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram. Int. 39, 2197–2206 (2013)

    CAS  Google Scholar 

  109. Zhang, J., Maeda, M., Kotobuki, N., Hirose, M., Ohgushi, H., Jiang, D., Iwasa, M.: Aqueous processing of hydroxyapatite. Mater. Chem. Phys. 99, 398–404 (2006)

    CAS  Google Scholar 

  110. Juang, H.Y., Hon, M.H.: The effect of calcination temperature on the behaviour of HA powder for injection moulding. Ceram. Int. 23, 383–387 (1997)

    CAS  Google Scholar 

  111. Chen, B., Zhang, Z., Zhang, J., Dong, M., Jiang, D.: Aqueous gel-casting of hydroxyapatite. Mater. Sci. Eng. A. 435-436, 198–203 (2006)

    Google Scholar 

  112. Chern Lin, J.H., Lin, H.J., Ding, S.J., Ju, C.P.: Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution. Mater. Chem. Phys. 64, 229–240 (2000)

    CAS  Google Scholar 

  113. Hae-Won, K., Young-Hag, K., Seung-Beom, S., Hyoun-Ee, K.: Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF2. Mater. Sci. Eng. C. 23, 515–521 (2003)

    Google Scholar 

  114. Rouahi, M., Champion, E., Gallet, O., Jada, A., Anselme, K.: Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf. B: Biointerfaces. 47, 10–19 (2006)

    CAS  Google Scholar 

  115. Guo, X., Gough, J.E., Xiao, P., Liu, J., Shen, Z.: Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. 82A(4), 1022–1032 (2007)

    CAS  Google Scholar 

  116. Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S., Lin, C.P.: Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 22, 2981–2992 (2001)

    CAS  Google Scholar 

  117. Kon, M., Ishikawa, K., Miyamoto, Y., Asaoka, K.: Development of calcium phosphate based functional gradient bioceramics. Biomaterials. 16, 709–714 (1995)

    CAS  Google Scholar 

  118. Santos, J.D., Knowles, J.C., Reis, R.L., Monteiro, F.J., Hastings, G.W.: Microstructural characterizations of glass-reinforced hydroxyapatite composites. Biomaterials. 15(1), 5–10 (1994)

    CAS  Google Scholar 

  119. Xin, R., Leng, Y., Chen, J., Zhang, Q.: A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials. 26, 6477–6486 (2005)

    CAS  Google Scholar 

  120. Ślósarczyk, A., Piekarczyk, J.: Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceram. Int. 25, 561–565 (1999)

    Google Scholar 

  121. Evis, Z., Tahmasebifar, A.: Structural and mechanical characteristics of hydroxyapatite and tricalcium phosphates doped with Al+3 and F ions. J. Ceram. Process. Res. 14, 549–556 (2013)

    Google Scholar 

  122. Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M.: Hydroxyapatite ceramics with selected sintering additives. Biomaterials. 18, 923–933 (1997)

    CAS  Google Scholar 

Download references

Funding

The authors thank the economic support of the Scientific Research Centre of Marmara University (Project No: FEN-A-100616-0272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Serdar Pazarlioglu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarlioglu, S.S., Salman, S. The effect of alumina additive and sintering temperature on the microstructural, physical, mechanical, and bioactivity properties of hydroxyapatite–alumina composites. J Aust Ceram Soc 56, 413–431 (2020). https://doi.org/10.1007/s41779-019-00345-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00345-3

Keywords

Navigation