Skip to main content

Advertisement

Log in

First Report on vanA-Enterococcus faecalis Recovered from Soils Subjected to Long-Term Livestock Agricultural Practices in Azores Archipelago

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Antibiotic resistance represents a serious threat to human health. Some agricultural practices may lead to the acquisition of antibiotic resistance on soil bacteria. The aim of this study was to characterize the antibiotic-resistant profile of enterococci in soils exposed to livestock agricultural practices in Azores archipelago. Twenty-four soil samples were collected in 3 different pasture lands of São Miguel Island from Azores archipelago, with a different number of grazing animals, and from a control site. Eight Enterococcus spp. isolates were recovered: E. faecium (n = 5), E. hirae (n = 1), E.faecalis (n = 1) and E. gallinarum (n = 1). The isolates were tested for antibiotic resistance and virulence genes. The E. faecalis isolate was resistant to vancomycin (VRE) and harboured the van(A), the aph(3′) and aac(6′)-Ie-aph(2′)-Ia antibiotic resistance genes as well the esp virulence gene. Almost all non-VRE isolates were resistant to erythromycin and ampicillin and harboured the erm(B) gene. The antibiotics used in dairy and beef livestock cattle production are excreted through manure, which may exert a selective pressure on soil bacteria, leading to a higher bacterial resistome in the soil. This represents a public health problem due to the negative consequences and it might represent to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abriouel H, Omar NB, Molinos AC, López RL, Grande MJ, Martínez-Viedma P, Ortega E, Cañamero MM, Galvez A (2008) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol 123(1–2):38–49. https://doi.org/10.1016/j.ijfoodmicro.2007.11.067

    Article  CAS  Google Scholar 

  • Araujo C, Munoz-Atienza E, Hernandez PE, Herranz C, Cintas LM, Igrejas G, Poeta P (2015) Evaluation of Enterococcus spp. from rainbow trout (Oncorhynchus mykiss, Walbaum), feed, and rearing environment against fish pathogens. Foodborne Pathog. Dis 12:311–322. https://doi.org/10.1089/fpd.2014.1906

    Article  CAS  Google Scholar 

  • Ben Said L, Klibi N, Dziri R, Borgo F, Boudabous A, Ben Slama K, Torres C (2015) Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J Sci Food Agric 96:1627–1633. https://doi.org/10.1002/jsfa.7264

    Article  Google Scholar 

  • Centinkaya Y, Yalk P, Mayhall CG (2000) Vancomycin-resistant Enterococci. Clin Microbiol Rev 2000(13):686–707

    Article  Google Scholar 

  • Chee-Sanford JC, Mackie R, Koike S, Krapac I, Lin Y, Yannarell A, Maxwell S, Aminov R (2009) Fate and transport of antibiotic residues and antibiotic resistance genes. J Environ Qual 38:1086–1108. https://doi.org/10.2134/jeq2008.0128

    Article  CAS  Google Scholar 

  • Chow JW (2000) Aminoglycoside resistance in Enterococci. Clin Infect Dis 31:586–589

    Article  CAS  Google Scholar 

  • Cruz JV, Pereira R, Moreira A (2007) Carta de Ocupação do Solo da Região Autónoma dos Açores (Report), Secretaria Regional do Ambiente e do Mar, Direcção Regional do Ordenamento do Território e dos Recursos Hídricos. http://www.azores.gov.pt/NR/rdonlyres/730FD13F-9AEE-4C6A-A2DA-4226FC77DCE0/388321/COSRAARELATORIO.pdf

  • Day MJ, Rodriguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K, Schink AK, Wu G, Chattaway MA, DoNascimento V, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Coldham N, Mevius D, Woodford N (2016) Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 71(5):1178–1182. https://doi.org/10.1093/jac/dkv485

    Article  Google Scholar 

  • De Leener E, Martel A, De Graef EM, Top J, Butaye P, Haesebrouck F, Willems R, Decostere A (2004) Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm(B) Genes. Appl Environ Microbiol 71(5):2766–2770. https://doi.org/10.1128/AEM.71.5.2766-2770.2005

    Article  Google Scholar 

  • Freire MP, Oshiro IC, Pierrotti LC, Bonazzi PR, de Oliveira LM, Song AT, Camargo CH, van der Heijden IM, Rossi F, Costa SF, D’Albuquerque LA, Abdala E (2016) Carbapenem-resistant Enterobacteriaceae acquired before liver transplantation: impact on recipient outcomes. Transplantation 101(4):811–820. https://doi.org/10.1097/TP.0000000000001620

    Article  Google Scholar 

  • Haack SK, Duris JW, Kolpin DW, Focazio MJ, Meyer MT, Johnson HE, Oster RJ, Foreman WT (2016) Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Sci Total Environ 563–564:340–350. https://doi.org/10.1016/j.scitotenv.2016.04.087

    Article  Google Scholar 

  • Haenni M, Saras E, Chatre P, Meunier D, Martin S, Lepage G, Menard M, Lebreton P, Rambaud T, Madec J (2009) vanA in Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus detected in french cattle. Foodborne Pathog Dis 6(9):1107–1111. https://doi.org/10.1089/fpd.2009.0303

    Article  CAS  Google Scholar 

  • He LY, Ying GG, Liu YS, Su HC, Chen J, Liu SS, Zhao JL (2016) Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ Int 92–93:210–219. https://doi.org/10.1016/j.envint.2016.03.023

    Article  Google Scholar 

  • Kang M, Xie Y, He C, Chen ZX, Guo L, Yang Q, Liu JY, Du Y, Ou QS, Wang LL (2014) Molecular characteristics of vancomycin-resistant Enterococcus faecium from a tertiary care hospital in Chengdu, China. Eur J Clin Microbiol Infect Dis 33:933–939. https://doi.org/10.1007/s10096-013-2029-z

    Article  CAS  Google Scholar 

  • Marinho C, Silva N, Pombo S, Santos T, Monteiro R, Goncalves A, Micael J, Rodrigues P, Costa AC, Igrejas G, Poeta P (2013) Echinoderms from Azores islands: an unexpected source of antibiotic resistant Enterococcus spp. and Escherichia coli isolates. Mar Pollut Bull 69(1–2):122–127. https://doi.org/10.1016/j.marpolbul.2013.01.017

    Article  CAS  Google Scholar 

  • Martínez JL (2012) Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens. Frontiers Microbiol 2:265. https://doi.org/10.3389/fmicb.2011.00265

    Article  Google Scholar 

  • Poeta P, Costa D, Rodrigues J, Torres C (2005) Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. J Antimicrob Chemother 55:278e80

    Article  Google Scholar 

  • Radhouani H, Pinto L, Coelho C, Sargo R, Araujo C, Lopez M, Torres C, Igrejas G, Poeta P (2010) MLST and a genetic study of antibiotic resistance and virulence factors in vanA-containing Enterococcus from buzzards (Buteo buteo). Lett Appl Microbiol 50:537–541. https://doi.org/10.1111/j.1472-765X.2010.02807

    Article  CAS  Google Scholar 

  • Radhouani H, Silva N, Poeta P, Torres C, Correia S, Igrejas G (2014) Potential impact of antimicrobial resistance in wildlife, environment and human health. Frontiers Microbiol 5:23. https://doi.org/10.3389/fmicb.2014.00023

    Article  Google Scholar 

  • Reyes K, Bardossy AC, Zervos M (2016) Vancomycin-resistant Enterococci epidemiology, infection prevention, and control. Infect Dis Clin N Am 30(2016):953–965. https://doi.org/10.1016/j.idc.2016.07.009

    Article  Google Scholar 

  • Rummukainen ML, Mäkelä M, Noro A, Finne-Soveri H, Lyytikäinen O (2013) Assessing prevalence of antimicrobial use and infections using the minimal data set in Finnish long-term care facilities. Am J Infect Control 41(4):e35–e37. https://doi.org/10.1016/j.ajic.2012.09.007

    Article  Google Scholar 

  • Santos T, Silva N, Igrejas G, Rodrigues P, Micael J, Rodrigues T, Cunha R, Poeta P (2013) Anaerobe dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores archipelago. Anaerobe 24:25–31

    Article  CAS  Google Scholar 

  • Silva V, Igrejas G, Carvalho I, Peixoto F, Cardoso L, Pereira JE, del Campo R, Poeta P (2017) Genetic characterization of vanA-Enterococcus faecium isolates from wild red-legged partridges in Portugal. Microb Drug Resist. https://doi.org/10.1089/mdr.2017.0040

    Google Scholar 

  • Tang Q, Song P, Li J, Kong F, Sun L, Xu L (2016) Control of antibiotic resistance in China must not be delayed: The current state of resistance and policy suggestions for the government, medical facilities, and patients. BioSci Trends 10(1):1–6. https://doi.org/10.5582/bst.2016.01034

    Article  Google Scholar 

  • Thaller MC, Marquez C, Tapia W, Cedeño V, Rossolini GM (2010) Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance. PLoS One 5(2):e8989. https://doi.org/10.1371/journal.pone.0008989

    Article  Google Scholar 

  • Torres C, Tenorio C, Portillo A, García M, Martínez C, Del Campo R, Ruiz-Larrea F, Zarazaga M (2003) Intestinal colonization by vanA- or vanB2-containing enterococcal isolates of healthy animals in Spain. Microb Drug Resist 9(Suppl 1):S47–S52

    Article  CAS  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci USA 111(42):15202–15207. https://doi.org/10.1073/pnas.1409836111

    Article  CAS  Google Scholar 

  • USDA (2016) Antibiotic resistance can occur naturally in soil bacteria. In: ScienceDaily

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112(18):5649–5654. https://doi.org/10.1073/pnas.1503141112

    Article  Google Scholar 

  • Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A et al (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:19046

    Google Scholar 

  • Woolhouse M, Ward M, van Bunnik B, Farrarr J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 370(1670):1–7. https://doi.org/10.1098/rstb.2014.0083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Alexandra Curado Quintas Dinis Poeta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, V., Peixoto, F., Igrejas, G. et al. First Report on vanA-Enterococcus faecalis Recovered from Soils Subjected to Long-Term Livestock Agricultural Practices in Azores Archipelago. Int J Environ Res 12, 39–44 (2018). https://doi.org/10.1007/s41742-018-0068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0068-0

Keywords

Navigation