Skip to main content
Log in

Electrochemiluminescence Analysis of Hydrogen Peroxide Using L012 Modified Electrodes

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In this paper, a luminol analog, L012, with a high-electrochemiluminescence (ECL) illumination is covalently assembled at indium tin oxide (ITO) surface that exhibits the ECL response to hydrogen peroxide in the solution. The ITO slide is firstly functioned with amine group that react with glutaraldehyde to introduce aldehyde group at the surface. Upon the exposure to L012 with amine group, the reaction between the aldehyde group and the amine group results in the linkage of L012 at the electrode surface. In the presence of hydrogen peroxide, enhanced ECL from L012 at the electrode surface is observed that is linearly related with the concentration of hydrogen peroxide. The detection limit is determined to be 4.3 μM (S/N = 3). The successful establishment of ECL response to hydrogen peroxide using L012 modified electrode will provide a new functioned ECL surface for the future ECL imaging of hydrogen peroxide release from single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schubert C. Single-cell analysis: the deepest differences. Nature. 2011;480(7375):133–7.

    Article  CAS  PubMed  Google Scholar 

  2. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring immune systems. Nat Immunol. 2014;15(2):128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV. Profiling metabolites and peptides in single cells. Nat Methods. 2011;8(4, Suppl):S20–S2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic byproduct or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8:722–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zamfir LG, Rotariu L, Marinescu VE, Simelane XT, Baker PGL, Iwuoha EI, Bala C. Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sens Actuators B Chem. 2016;226:525–33.

    Article  CAS  Google Scholar 

  6. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12:231–42.

    Article  PubMed  Google Scholar 

  7. Szkudlarek U, Maria L, Kasielski M, Kaucka S, Nowak D. Exhaled hydrogen peroxide correlates with the release of reactive oxygen species by blood phagocytes in healthy subjects. Respir Med. 2003;97:718–25.

    Article  CAS  PubMed  Google Scholar 

  8. Matharu Z, Enomoto J, Revzin A. Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes. Anal Chem. 2013;85:932–9.

    Article  CAS  PubMed  Google Scholar 

  9. Spencer JPE, Jenner A, Aruoma OI, Cross CE, Wu R, Halliwell B. Oxidative DNA damage in human respiratory tract epithelial cells. Time course in relation to DNA strand breakage. Biochem Biophys Res Commun. 1996;224:17–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kuo CC, Lan WJ, Chen CH. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale. 2014;6:334–41.

    Article  CAS  PubMed  Google Scholar 

  11. Pramanik D, Dey SG. Active site environment of Heme-bound amyloid β peptide associated with Alzheimer's disease. J Am Chem Soc. 2011;133:81–7.

    Article  CAS  PubMed  Google Scholar 

  12. Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T. Development of a highly sensitive fluorescence probe for hydrogen peroxide. J Am Chem Soc. 2011;133(27):10629–37.

    Article  CAS  PubMed  Google Scholar 

  13. Gehrmann W, Elsner M. A specific fluorescence probe for hydrogen peroxide detection in peroxisomes. Free Radical Res. 2011;45(5):501–6.

    Article  CAS  Google Scholar 

  14. Pan R, Xu M, Jiang D, Burgess JD, Chen HY. Nanokit for single-cell electrochemical analyses. Proc Natl Acad Sci USA. 2016;113:11436–40.

    Article  CAS  PubMed  Google Scholar 

  15. Ko E, Tran V-K, Geng Y, Sung W, Chan C, Park H, Kim MK, Jin GH, Seong GH. Continuous electrochemical detection of hydrogen peroxide by Au–Ag bimetallic nanoparticles in microfluidic devices. J Electro Chem. 2017;792:72–8.

    Article  CAS  Google Scholar 

  16. Pan R, Xu M, Burgess JD, Jiang D, Chen HY. Direct electrochemical observation of glucosidase activity in isolated single lysosomes from a living cell. Proc Natl Acad Sci USA. 2018;115:4087–92.

    Article  CAS  PubMed  Google Scholar 

  17. Hamtak M, Fotouhi L, Hosseini M, Ganjali MR. Sensitive nonenzymatic electrochemiluminescence determination of hydrogen peroxide in dental products using a polypyrrole/polyluminol/titanium dioxide nanocomposite. Anal Lett. 2018;52(4):1–16.

    Google Scholar 

  18. Sakura S. Electrochemiluminescence of hydrogen peroxide–luminol at a carbon electrode. Anal Chim Acta. 1992;262:49–57.

    Article  CAS  Google Scholar 

  19. He R, Tang H, Jiang D, Chen H. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal Chem. 2016;88:2006–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jin GX, Wang CM, Yang LL, Li XJ, Guo LH, Qiu B, Lin ZY, Chen GN. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Biosens Bioelectron. 2015;63:166–71.

    Article  CAS  PubMed  Google Scholar 

  21. Haghighi B, Bozorgzadeh S. Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: a novel route for the fabrication of an oxygen sensor and a glucose biosensor. Anal Chim Acta. 2011;697:90–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tang XF, Zhao D, He JC, Li FW, Peng JX, Zhang MN. Quenching of the electrochemiluminescence of tris (2,2-bipyridine) ruthenium(II)/Tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Anal Chem. 2013;85:1711–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dai H, Chi YW, Wu XP, Wang YM, Wei MD, Chen GN. Optimized antimicrobial and antiproliferative activities of titanate nanofibers containing silver. Biosens Bioelectron. 2010;25:1414–9.

    Article  CAS  PubMed  Google Scholar 

  24. Cai X, Yan JL, Chu HH, Wu MS, Tu YF. An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat. Sens Actuators B Chem. 2010;143:655–9.

    Article  CAS  Google Scholar 

  25. Lin ZY, Chen JH, Chen GN. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode. Electrochim Acta. 2008;53:2396–401.

    Article  CAS  Google Scholar 

  26. Daiber A, August M, Baldus S, Wendt M, Oelze M, Sydow K, Kleschyov AL, Munzel T. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L012. Free Radical Biol Med. 2004;36:101–11.

    Article  CAS  Google Scholar 

  27. Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. Annu Rev Anal Chem. 2019;12:275–95.

    Article  CAS  Google Scholar 

  28. Xu J, Huang P, Qin Y, Jiang D, Chen HY. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem. 2016;88(9):4609–12.

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Jiang D, Qin Y, Xia J, Jiang D, Chen HY. C3N4 nanosheet modified microwell array with enhanced electrochemiluminescence for total analysis of cholesterol at single cells. Anal Chem. 2017;89(4):2216–20.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou J, Ma G, Chen Y, Fang D, Jiang D, Chen HY. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal Chem. 2015;87(16):8138–43.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Jin R, Jiang D, Chen HY. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc. 2019;141:10294–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Ding H, Zhao S, Jiang D, Chen HY. Confined electrochemiluminescence in vertically ordered silica mesochannels for the imaging of hydrogen peroxide released from single cells. Electro Commu. 2019;98:38–42.

    Article  CAS  Google Scholar 

  33. Chen Y, Fu J, Cui C, Jiang D, Chen Z, Chen HY, Zhu JJ. In situ visualization of electrocatalytic reaction activity at quantum dots for water oxidation. Anal Chem. 2018;90(14):8635–41.

    Article  PubMed  Google Scholar 

  34. Zielonka J, Lambeth JD, Kalyanaraman B. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a re-evaluation. Free Radic Biol Med. 2013;65:1310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechen Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, D. & Chen, HY. Electrochemiluminescence Analysis of Hydrogen Peroxide Using L012 Modified Electrodes. J. Anal. Test. 4, 122–127 (2020). https://doi.org/10.1007/s41664-020-00134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00134-z

Keywords

Navigation