Skip to main content
Log in

Visual Voltammogram at an Array of Closed Bipolar Electrodes in a Ladder Configuration

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In this paper, we report a method for obtaining a visual voltammogram at a linear array of closed wireless bipolar electrodes (BPEs). This advancement is significant, because the visual voltammogram captures the entire current–potential (iE) relationship of a faradaic reaction in one image and is continuously generated over time. Therefore, we anticipate that this method will allow monitoring in redox systems that change over time. Further, the use of a linear array of BPEs eliminates the need to use a potentiostat and can be carried out with a simple DC power supply. Our experimental and numerical results demonstrate that the visual voltammogram is similar to a linear sweep voltammogram and therefore, information about the faradaic process can be extracted from the wave position, height, and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cox JT, Guerrette JP, Zhang B. Steady-state voltammetry of a microelectrode in a closed bipolar cell. Anal Chem. 2012;84:8797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang BY, Mavré F, Chow KF, Crooks JA, Crooks RM. Snapshot voltammetry using a triangular bipolar. Anal Chem. 2010;82:5317–22.

    Article  CAS  PubMed  Google Scholar 

  3. Klett O, Nyholm L. Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Anal Chem. 2003;75(6):1245–50.

    Article  CAS  PubMed  Google Scholar 

  4. Ordeig O, Godino N, del Campo J, Muñoz FX, Nikolajeff F, Nyholm L. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal Chem. 2008;80(10):3622–32.

    Article  CAS  PubMed  Google Scholar 

  5. Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52:10438–56.

    Article  CAS  Google Scholar 

  6. Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46:2513–23.

    Article  CAS  PubMed  Google Scholar 

  7. Mavré F, Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem. 2010;82:8766–74.

    Article  CAS  PubMed  Google Scholar 

  8. Fosdick SE, Crooks RM. Bipolar electrodes for rapid screening of electrocatalysts. J Am Chem Soc. 2012;134:863–6.

    Article  CAS  PubMed  Google Scholar 

  9. Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem. 2013;85:2493–9.

    Article  CAS  PubMed  Google Scholar 

  10. Singh BK, Hillier AC. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem. 2006;78:2009–18.

    Article  CAS  PubMed  Google Scholar 

  11. Jayaraman S, Hillier AC. Construction and reactivity mapping of a platinum catalyst gradient using the scanning electrochemical microscope. Langmuir. 2001;17:7857–64.

    Article  CAS  Google Scholar 

  12. Jambunathan K, Jayaraman S, Hillier AC. A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited PtxRuy. Langmuir. 2004;20:1856–63.

    Article  CAS  Google Scholar 

  13. Mougin K, Ham AS, Lawrence MB, Fernandez EJ, Hillier AC. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Langmuir. 2005;21:4809–12.

    Article  CAS  PubMed  Google Scholar 

  14. Singh BK, Hillier AC. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem. 2006;78:2009–18.

    Article  CAS  PubMed  Google Scholar 

  15. Singh BK, Hillier AC. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. Anal Chem. 2008;80:3803–10.

    Article  CAS  PubMed  Google Scholar 

  16. Chow KF, Mavré F, Crooks RM. Wireless electrochemical DNA microarray sensor. J Am Chem Soc. 2008;130:7544–5.

    Article  CAS  PubMed  Google Scholar 

  17. Chow KF, Mavré F, Crooks JA, Chang BY, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131:8364–5.

    Article  CAS  PubMed  Google Scholar 

  18. Guerrette JP, Percival SJ, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J Am Chem Soc. 2013;135:855–61.

    Article  CAS  PubMed  Google Scholar 

  19. Xu W, Fu K, Ma C, Bohn PW. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst. 2016;141:6018–24.

    Article  CAS  PubMed  Google Scholar 

  20. Xu W, Fu K, Bohn PW. Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling. ACS Sens. 2017;2:1020–6.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Shang C, Gu W, Xia Y, Li J, Wang E. A renewable display platform based on the bipolar electrochromic electrode. ChemElectroChem. 2016;3:383–6.

    Article  CAS  Google Scholar 

  22. Gupta B, Goudeau B, Kuhn A. Wireless electrochemical actuation of conducting polymers. Angew Chem Int Ed Engl. 2017;56:14183–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar electrodes with 100% current efficiency for sensors. ACS Sens. 2017;2:320–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lin X, Zheng L, Gao G, Chi Y, Chen G. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem. 2012;84:7700–7.

    Article  CAS  PubMed  Google Scholar 

  25. Mavré F, Chow KF, Sheridan E, Chang BY, Crooks JA, Crooks RM. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal Chem. 2009;81:6218–25.

    Article  CAS  Google Scholar 

  26. McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002;35:491–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bitziou E, Snowden ME, Joseph MB, Leigh SJ, Covington JA, MacPherson JV, Unwin PR. Dual electrode micro-channel flow cell for redox titrations: kinetics and analysis of homogeneous ascorbic acid oxidation. J Electroanal Chem. 2013;692:72–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Society of Analytical Chemists of Pittsburgh for a Starter Grant. JSB acknowledges partial support from the Iowa State University Center for Catalysis. The authors also gratefully thank Min Li, Kira Rahn, and Beatrise Berzina for both technical support and assistance in preparing the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbyn K. Anand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchers, J.S., Riusech, O., Rasmussen, E. et al. Visual Voltammogram at an Array of Closed Bipolar Electrodes in a Ladder Configuration. J. Anal. Test. 3, 150–159 (2019). https://doi.org/10.1007/s41664-019-00098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00098-9

Keywords

Navigation