Skip to main content

Advertisement

Log in

Metabolomic Fingerprinting of Blood Samples by Direct Infusion Mass Spectrometry: Application in Alzheimer’s Disease Research

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2017

This article has been updated

Abstract

Metabolomics is largely employed in numerous biomedical research fields, such as the study of the underlying pathology of diseases, discovery of diagnostic biomarkers, or drug development. Nowadays, the main challenge is to obtain comprehensive and unbiased metabolomic profiles due to the huge complexity, heterogeneity, and dynamism of the metabolome. To this end, mass spectrometry represents a very interesting analytical platform, since the complexity of metabolome may be overcome through the use of different orthogonal separation techniques, including liquid chromatography, gas chromatography, and capillary electrophoresis. Alternatively, direct mass spectrometry analysis has been postulated as a complementary choice to hyphenated approaches. This technique exhibits several advantages such as the ability for high-throughput screening, fast analysis, and wide metabolomic coverage, since there is not exclusion of compounds due to the separation device. The present work explores the utility of metabolomics based on direct infusion mass spectrometry for analyzing blood samples. The most important analytical concerns to be considered are discussed, including sample handling, comprehensive fingerprinting, as well as subsequent identification of metabolites, and global characterization of metabolomic profiles. To conclude, a brief review on the application of these metabolomic platforms in Alzheimer’s disease research is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Reprinted from González-Domínguez et al. [11] with permission from Springer)

Fig. 2

Similar content being viewed by others

Change history

References

  1. Emwas AHM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9:1048–72.

    Article  CAS  Google Scholar 

  2. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuehnbaum NL, Britz-McKibbin P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev. 2013;113:2437–68.

    Article  CAS  PubMed  Google Scholar 

  4. Barbas C, Moraes EP, Villaseñor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal. 2011;55:823–31.

    Article  CAS  PubMed  Google Scholar 

  5. González-Domínguez R, Sayago A, Fernández-Recamales A. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis. 2017;9:131–48.

    Article  PubMed  CAS  Google Scholar 

  6. González-Domínguez R, Sayago A, Fernández-Recamales A. Metabolomics in Alzheimer’s disease: the need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. J Chromatogr B. 2017 (in press).

  7. Draper J, Lloyd AJ, Goodacre R, Beckmann M. Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics. 2013;9:S4–29.

    Article  CAS  Google Scholar 

  8. Li N, peng Song Y, Tang H, Wang Y. Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch Biochem Biophys. 2016;589:4–9.

    Article  CAS  PubMed  Google Scholar 

  9. Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal Chem. 2008;80:421–9.

    Article  PubMed  CAS  Google Scholar 

  10. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    Article  CAS  PubMed  Google Scholar 

  11. Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res. 2001;32:367–81.

    Article  CAS  PubMed  Google Scholar 

  12. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics. 2014;9:292–300.

    Article  Google Scholar 

  13. Ibáñez C, Simó C, Cifuentes A. Metabolomics in Alzheimer’s disease research. Electrophoresis. 2013;34:2799–811.

    Google Scholar 

  14. Patel S, Shah RJ, Coleman P, Sabbagh M. Potential peripheral biomarkers for the diagnosis of Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:572495.

    PubMed  PubMed Central  Google Scholar 

  15. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal. 2014;98:321–6.

    Article  PubMed  CAS  Google Scholar 

  16. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem. 2014;406:7137–48.

    Article  PubMed  CAS  Google Scholar 

  17. Beckmann M, Parker D, Enot DP, Duval E, Draper J. High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc. 2008;3:486–504.

    Article  CAS  PubMed  Google Scholar 

  18. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis: chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem. 2016;78:23–35.

    Article  CAS  Google Scholar 

  20. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS ONE. 2011;6:e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moco S, Bino RJ, De Vos RCH, Vervoort J. Metabolomics technologies and metabolite identification. Trends Anal Chem. 2007;26:855–66.

    Article  CAS  Google Scholar 

  22. Murphy RC, Barkley RM, Berry KZ, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S. Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem. 2005;346:1–42.

    Article  CAS  PubMed  Google Scholar 

  23. Vernez L, Hopfgartner G, Wenk M, Krahenbuhl S. Determination of carnitine and acylcarnitines in urine by high-performance liquid chromatography–electrospray ionization ion trap tandem mass spectrometry. J Chromatogr A. 2003;984:203–13.

    Article  CAS  PubMed  Google Scholar 

  24. Divito EB, Davic AP, Johnson ME, Cascio M. Electrospray ionization and collision induced dissociation mass spectrometry of primary fatty acid amides. Anal Chem. 2012;84:2388–94.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy RC, Leiker TJ, Barkley RM. Glycerolipid and cholesterol ester analyses in biological samples by mass spectrometry. Biochim Biophys Acta. 2011;1811:776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Iberian ham typification by direct infusion electrospray and photospray ionization mass spectrometry fingerprinting. Rapid Commun Mass Spectrom. 2012;26:835–44.

    Article  PubMed  CAS  Google Scholar 

  27. Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22:332–64.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Xie S, Yang J, Yang Q, Xu G. Structural identification of human blood phospholipids using liquid chromatography/quadrupole-linear ion trap mass spectrometry. Anal Chim Acta. 2004;525:1–10.

    Article  CAS  Google Scholar 

  29. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer’s disease. J Proteom. 2014;104:37–47.

    Article  CAS  Google Scholar 

  30. Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B. 2009;877:2696–708.

    Article  CAS  Google Scholar 

  31. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta. 2006;1761:121–8.

    Article  CAS  PubMed  Google Scholar 

  32. Qiao X, Ye M, Liu CF, Yang WZ, Miao WJ, Dong J, Guo DA. A tandem mass spectrometric study of bile acids: interpretation of fragmentation pathways and differentiation of steroid isomers. Steroids. 2012;77:204–11.

    Article  CAS  PubMed  Google Scholar 

  33. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry. Chem Pap. 2012;66:829–35.

    Article  CAS  Google Scholar 

  34. González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Application of metabolomics based on direct mass spectrometry analysis for the elucidation of altered metabolic pathways in serum from the APP/PS1 transgenic model of Alzheimer’s disease. J Pharm Biomed Anal. 2015;107:378–85.

    Article  PubMed  CAS  Google Scholar 

  35. González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Metabolomic research on the role of interleukin-4 in Alzheimer’s disease. Metabolomics. 2015;11:1175–83.

    Article  CAS  Google Scholar 

  36. González-Domínguez R, Rupérez FJ, García-Barrera T, Barbas C, Gómez-Ariza JL. Metabolomic-driven elucidation of pathological mechanisms associated with Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res. 2016;13:641–53.

    Article  PubMed  CAS  Google Scholar 

  37. González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Deciphering metabolic abnormalities associated with Alzheimer’s disease in the APP/PS1 mouse model using integrated metabolomic approaches. Biochimie. 2015;110:119–28.

    Article  PubMed  CAS  Google Scholar 

  38. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Metabolite profiling for the identification of altered metabolic pathways in Alzheimer’s disease. J Pharm Biomed Anal. 2015;107:75–81.

    Article  PubMed  CAS  Google Scholar 

  39. González-Domínguez R, García A, García-Barrera T, Barbas C, Gómez-Ariza JL. Metabolomic profiling of serum in the progression of Alzheimer’s disease by capillary electrophoresis–mass spectrometry. Electrophoresis. 2014;35:3321–30.

    Article  PubMed  CAS  Google Scholar 

  40. González-Domínguez R, Castilla-Quintero R, García-Barrera T, Gómez-Ariza JL. Development of a metabolomic approach based on urine samples and direct infusion mass spectrometry. Anal Biochem. 2014;465:20–7.

    Article  PubMed  CAS  Google Scholar 

  41. González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer’s disease by direct infusion mass spectrometry. J Pharm Biomed Anal. 2015;102:425–35.

    Article  PubMed  CAS  Google Scholar 

  42. González-Domínguez R, García-Barrera T, Vitorica J, Gómez-Ariza JL. High throughput multi-organ metabolomics in the APP/PS1 mouse model of Alzheimer’s disease. Electrophoresis. 2015;36:2237–49.

    Article  PubMed  CAS  Google Scholar 

  43. Gago-Tinoco A, González-Domínguez R, García-Barrera T, Blasco-Moreno J, Bebianno MJ, Gómez-Ariza JL. Metabolic signatures associated with environmental pollution by metals in Doñana National Park using P. clarkii as bioindicator. Environ Sci Pollut Res Int. 2014;21:13315–23.

    Article  PubMed  Google Scholar 

  44. Lin S, Liu H, Kanawati B, Liu L, Dong J, Li M, Huang J, Schmitt-Kopplin P, Cai Z. Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer’s disease in CRND8 mice. Anal Bioanal Chem. 2013;405:5105–17.

    Article  CAS  PubMed  Google Scholar 

  45. Lin S, Kanawati B, Liu L, Witting M, Li M, Huang J, Schmitt-Kopplin P, Cai Z. Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. Talanta. 2014;118:45–53.

    Article  CAS  PubMed  Google Scholar 

  46. González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Application of a novel metabolomics approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer’s disease. Talanta. 2015;131:480–9.

    Article  PubMed  CAS  Google Scholar 

  47. Wood PL, Locke VA, Herling P, Passaro A, Vigna GB, Volpato S, Valacchi G, Cervellati C, Zuliani G. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). BBA Clin. 2016;5:25–8.

    Article  PubMed  Google Scholar 

  48. Han X, Holtzman DM, McKeel DW Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem. 2001;77:1168–80.

    Article  CAS  PubMed  Google Scholar 

  49. Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem. 2002;82:809–18.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng H, Zhou Y, Holtzman DM, Han X. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer’s disease. Neurobiol Aging. 2010;31:1188–96.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng H, Wang M, Li JL, Cairns NJ, Han X. Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem. 2013;127:733–8.

    Article  CAS  PubMed  Google Scholar 

  52. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, Doraiswamy PM, Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6:e21643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl González-Domínguez.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s41664-017-0041-5.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Domínguez, R. Metabolomic Fingerprinting of Blood Samples by Direct Infusion Mass Spectrometry: Application in Alzheimer’s Disease Research. J. Anal. Test. 1, 17 (2017). https://doi.org/10.1007/s41664-017-0018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-017-0018-4

Keywords

Navigation