Skip to main content
Log in

A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The muon radiography imaging technique for high-atomic-number objects (Z) and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation detection imaging. However, few imaging studies have been reported on low and medium Z objects at the centimeter scale. This paper presents an imaging system that consists of three layers of a position-sensitive detector and four plastic scintillation detectors. It acquires data by coincidence detection technique of cosmic-ray muon and its secondary particles. A 3D imaging algorithm based on the density of the coinciding muon trajectory was developed, and 4D imaging that takes the atomic number dimension into account by considering the secondary particle ratio information was achieved. The resultant reconstructed 3D images could distinguish between a series of cubes with 5-mm-side lengths and 2-mm-intervals. If the imaging time is more than 20 days, this method can distinguish intervals with a width of 1 mm. The 4D images can specify target objects with low, medium, and high Z values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.H. Neddermeyer, C.D. Anderson, Cosmic-ray particles of intermediate mass. Phys. Rev. 54, 88 (1938). https://doi.org/10.1103/PhysRev.54.88.2

    Article  ADS  Google Scholar 

  2. J.W. Lin, Y.F. Chen, R.J. Sheu et al., Measurement of angular distribution of cosmic-ray muon fluence rate. Nucl. Instru. Meth. A 619, 24–27 (2010). https://doi.org/10.1016/j.nima.2009.12.017

    Article  ADS  Google Scholar 

  3. M. Tanabashi, P.D. Grp, K. Hagiwara et al., Review of particle physics: Particle data group. Phys. Rev. D. 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  4. Z.W. Pan, J.Y. Dong, X.J. Ni et al., Conceptual design and update of the 128-channel μSR prototype spectrometer based on musrSim. Nucl. Sci. Tech. 30, 123 (2019). https://doi.org/10.1007/s41365-019-0648-5

    Article  Google Scholar 

  5. L.P. Zhou, Q.L. Mu, H.T. Jing et al., A possible scheme for the surface muon beamline at CSNS. Nucl. Sci. Tech. 30, 169 (2019). https://doi.org/10.1007/s41365-019-0684-1

    Article  ADS  Google Scholar 

  6. R.H. Bernstein, P.S. Cooper, Charged lepton flavor violation: An experimenter’s guide. Phys. Rep. 532, 27–64 (2013). https://doi.org/10.1016/j.physrep.2013.07.002

    Article  ADS  Google Scholar 

  7. Y. Kuno, A search for muon-to-electron conversion at J-PARC: the COMET experiment. Prog. Theor. Phys. 2013, 2, 022C01 (2013). https://doi.org/10.1093/ptep/pts089

  8. K.N. Borozdin, G.E. Hogan, C. Morris et al., Surveillance: Radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003). https://doi.org/10.1038/422277a

    Article  ADS  Google Scholar 

  9. P.L. Rocca, V. Antonuccio, M. Bandieramonte et al., Search for hidden high-Z materials inside containers with the Muon portal project. J. Instrum. 9, C01056 (2014). https://doi.org/10.1088/1748-0221/9/01/C01056

    Article  Google Scholar 

  10. J. Armitage, J. Botte, K. Boudjemline et al., First images from the cript muon tomography system. Int. J. Mod. Phys. Conf. Ser 27, 1460129 (2014). https://doi.org/10.1142/S201019451460129X

    Article  Google Scholar 

  11. K. Borozdin, S. Greene, Z. Lukic et al., Cosmic ray radiography of the damaged cores of the Fukushima reactors. Phys. Rev. Lett. 109, 152501 (2012). https://doi.org/10.1103/physrevlett.109.152501

    Article  ADS  Google Scholar 

  12. X.Y. Pan, Y.F. Zheng, Z. Zeng et al., Experimental validation of material discrimination ability of muon scattering tomography at the TUMUTY facility. Nucl. Sci. Tech. 30, 120 (2019). https://doi.org/10.1007/s41365-019-0649-4

    Article  Google Scholar 

  13. S. Xiao, W.B. He, M.C. Lan et al., A modified multi-group model of angular and momentum distribution of cosmic ray muons for thickness measurement and material discrimination of slabs. Nucl. Sci. Tech. 29, 28 (2018). https://doi.org/10.1007/s41365-018-0363-7

    Article  Google Scholar 

  14. J.N. Dong, Y.L. Zhang, Z.Y. Zhang et al., Position-sensitive plastic scintillator detector with WLS-fiber readout. Nucl. Sci. Tech. 29, 117 (2018). https://doi.org/10.1007/s41365-018-0449-2

    Article  Google Scholar 

  15. L.W. Alvarez, J.A. Anderson, F.E. Bedwei et al., Search for hidden chambers in the pyramids. Science 167, 3919 (1970). https://doi.org/10.1126/science.167.3919.832

    Article  Google Scholar 

  16. H.K.M. Tanaka, T. Uchida, M. Tanaka et al., Cosmic-ray muon imaging of magma in a conduit: Degassing process of Satsuma-Iwojima Volcano. Geophys. Res. Lett. 36, L01304 (2009). https://doi.org/10.1029/2008GL036451

    Article  ADS  Google Scholar 

  17. K. Jourde, D. Gibert, J. Marteau et al., Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano. Sci. Rep. 6, 33406 (2016). https://doi.org/10.1038/srep33406

    Article  ADS  Google Scholar 

  18. V. Tioukov, A. Alexandrov, C. Bozza et al., First muography of Stromboli volcano. Sci. Rep. 9, 6695 (2019). https://doi.org/10.1038/s41598-019-43131-8

    Article  ADS  Google Scholar 

  19. N. Lesparre, J. Marteau, Y. Declais et al., Design and operation of a field telescope for cosmic ray geophysical tomography. Geosci. Instrum. Method. Data Syst. 1, 33 (2012)

    Article  ADS  Google Scholar 

  20. C. Carloganu, V. Niess, S. Bene et al., Towards a muon radiography of the Puy de Dme. Geosci. Instrum. Method. Data Syst. 2, 55 (2013)

    Article  ADS  Google Scholar 

  21. A. Anastasio, F. Ambrosino, D. Basta et al., The MU-RAY experiment an application of SiPM technology to the understanding of volcanic phenomena. Nucl. Instru. Meth. A 718, 134–137 (2013). https://doi.org/10.1016/j.nima.2012.08.065

    Article  ADS  Google Scholar 

  22. V.V. Kobylyansky, V.V. Moiseichenko, A.I. Myagkikh et al., The deep-sea Cerenkov muon detector with spatial structure. Sov. J. Phys. Oceanogr. 3, 149–153 (1992). https://doi.org/10.1007/BF02197621

    Article  Google Scholar 

  23. N. Lesparre, D. Gibert, J. Marteau et al., Geophysical muon imaging: feasibility and limits. Geophys. J. Int. 183, 1348–1361 (2010). https://doi.org/10.1111/j.1365-246X.2010.04790.x

    Article  ADS  Google Scholar 

  24. K. Morishima, M. Kuno, A. Nishio et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017). https://doi.org/10.1038/nature24647

    Article  ADS  Google Scholar 

  25. R. Han, Q. Yu, Z. Li et al., Cosmic muon flux measurement and tunnel overburden structure imaging. J. Instrum. 15, P06019 (2020). https://doi.org/10.1088/1748-0221/15/06/P06019

    Article  Google Scholar 

  26. K. Nagamine, M. Iwasaki, K. Shimomura et al., Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction. Nucl. Instru. Meth. A 356, 585–595 (1995). https://doi.org/10.1016/0168-9002(94)01169-9

    Article  ADS  Google Scholar 

  27. A. Anastasio, F. Ambrosino, D. Basta et al., The MU-RAY detector for muon radiography of volcanoes. Nucl. Instru. Meth. A 732, 423–426 (2013). https://doi.org/10.1016/j.nima.2013.05.159

    Article  ADS  Google Scholar 

  28. S. Pesente, S. Vanini, M. Benettoni et al., First results on material identification and imaging with a large-volume muon tomography prototype. Nucl. Instru. Meth. A 604, 3 (2009). https://doi.org/10.1016/j.nima.2009.03.017

    Article  MATH  Google Scholar 

  29. K. Gnanvo, L.V. Grasso, M. Hohlmann et al., Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a Muon Tomography station based on GEM detectors. Nucl. Instru. Meth. A 652, 16–20 (2011). https://doi.org/10.1016/j.nima.2011.01.163

    Article  ADS  Google Scholar 

  30. S. Bouteille, D. Attie, P. Baron et al., A Micromegas-based telescope for muon tomography: The WatTo experiment. Nucl. Instrum. Meth. A 834, 223–228 (2016). https://doi.org/10.1016/j.nima.2016.08.002

    Article  ADS  Google Scholar 

  31. J. Feng, Z. Zhang, J. Liu et al., A thermal bonding method for manufacturing Micromegas detectors. Nucl. Instru. Meth. A 989, 164958 (2020). https://doi.org/10.1016/j.nima.2020.164958

    Article  Google Scholar 

  32. I. Bikit, D. Mrdja, K. Bikit et al., Novel approach to imaging by cosmic-ray muons. EPL 113, 58001 (2016). https://doi.org/10.1209/0295-5075/113/58001

    Article  ADS  Google Scholar 

  33. D. Mrdja, I. Bikit, K. Bikit et al., First cosmic-ray images of bone and soft tissue. EPL 116, 48003 (2016). https://doi.org/10.1209/0295-5075/116/48003

    Article  ADS  Google Scholar 

  34. G. Galgoczi, D. Mrdja, I. Bikit et al., Imaging by muons and their induced secondary particles—a novel technique. J. Instrum. 15, 6 (2020). https://doi.org/10.1088/1748-0221/15/06/C06014

    Article  Google Scholar 

  35. A.G. Bogdanov, H. Burkhardt, V.N. Ivanchenko et al., Geant4 simulation of production and interaction of Muons. IEEE Trans. Nucl. Sci. 53, 2 (2006). https://doi.org/10.1109/TNS.2006.872633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xuan-Tao Ji, Si-Yuan Luo, Yu-He Huang, and Xiao-Dong Wang. The first draft of the manuscript was written by Xuan-Tao Ji, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Dong Wang.

Additional information

This work was supported by the Ministry of Science and Technology of China Foundation (No. 2020YFE0202001), the National Natural Science Foundation of China (No. 11875163), and the Natural Science Foundation of Hunan Province (No. 2021JJ20006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XT., Luo, SY., Huang, YH. et al. A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles. NUCL SCI TECH 33, 2 (2022). https://doi.org/10.1007/s41365-022-00989-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-00989-0

Keywords

Navigation