Skip to main content

Advertisement

Log in

Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The smuggling of special nuclear materials (SNMs) across national borders is becoming a serious threat to nuclear nonproliferation. This paper presents a feasibility study on the rapid interrogation of concealed SNMs by combining scattering and transmission nuclear resonance fluorescence (sNRF and tNRF) spectroscopy. In sNRF spectroscopy, SNMs such as \(^{235, 238}\)U are excited by a wide-band photon beam of appropriate energy and exhibit unique NRF signatures. Monte Carlo simulations show that one-dimensional scans can realize isotopic identification of concealed \(^{235, 238}\)U when the detector array used for interrogation has sufficiently high energy resolution. The simulated isotopic ratio \(^{235}\)U/\(^{238}\)U is in good agreement with the theoretical value when the SNMs are enclosed in relatively thin iron. This interrogation is followed by tNRF spectroscopy using a narrow-band photon beam with the goal of obtaining tomographic images of the concealed SNMs. The reconstructed image clearly reveals the position of the isotope \(^{235}\)U inside an iron rod. It is shown that the interrogation time of sNRF and tNRF spectroscopy is one order of magnitude lower than that when only tNRF spectroscopy is used and results in a missed-detection rate of 10\(^{-3}\). The proposed method can also be applied for isotopic imaging of other SNMs such as \(^{239, 240}\)Pu and \(^{237}\)Np.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA, Incidents and Trafficking Database (ITDB) Incidents of nuclear and other radioactive material out of regulatory control, in Fact Sheet (International Atomic Energy Agency Vienna, Austria, 2020), p. 2020

  2. C.D. Ferguson, W.C. Potter, A. Sands, The Four Faces of Nuclear Terrorism (Routledge, London, 2005)

    Google Scholar 

  3. R.T. Kouzes, E.R. Siciliano, J.H. Ely et al., Passive neutron detection for interdiction of nuclear material at borders. Nucl. Instrum. Methods A 584, 383–400 (2008). https://doi.org/10.1016/j.nima.2007.10.026

    Article  ADS  Google Scholar 

  4. D. Cester, G. Nebbia, L. Stevanato et al., Special nuclear material detection with a mobile multi-detector system. Nucl. Instrum. Methods A 663, 55–63 (2012). https://doi.org/10.1016/j.nima.2011.10.011

    Article  ADS  Google Scholar 

  5. C. Thomay, J. Velthuis, P. Baesso et al., A binned clustering algorithm to detect high-Z material using cosmic muons. J. Instrum. 8, P10013 (2013). https://doi.org/10.1088/1748-0221/8/10/P10013

    Article  Google Scholar 

  6. E. Guardincerri, J. Bacon, K. Borozdin et al., Detecting special nuclear material using muon-induced neutron emission. Nucl. Instrum. Methods A 789, 109–113 (2015). https://doi.org/10.1016/j.nima.2015.03.070

    Article  ADS  Google Scholar 

  7. P. Baesso, D. Cussans, J. Davies et al., High resolution muon tracking with resistive plate chambers. J. Instrum. 7, P11018 (2012). https://doi.org/10.1088/1748-0221/7/11/P11018

    Article  Google Scholar 

  8. X.Y. Pan, Y.F. Zheng, Z. Zeng et al., Experimental validation of material discrimination ability of muon scattering tomography at the TUMUTY facility. Nucl. Sci. Tech. 30, 120 (2019). https://doi.org/10.1007/s41365-019-0649-4

    Article  Google Scholar 

  9. D. Slaughter, M. Accatino, A. Bernstein et al., Detection of special nuclear material in cargo containers using neutron interrogation. Technical Report, Lawrence Livermore National Lab., CA (US) (2003). https://doi.org/10.2172/15005260

  10. E.B. Norman, S.G. Prussin, R.M. Larimer et al., Signatures of special nuclear material: High-energy gamma rays following fission. Nucl. Instrum. Methods A 21 (LBNL-52806). https://www.osti.gov/biblio/837730

  11. M. Huang, J.Y. Zhu, J. Wu, Study of spatial resolution of the associated alpha particle imaging-time-of-flight method. Nucl. Sci. Tech. 30, 64 (2019). https://doi.org/10.1007/s41365-019-0580-8

    Article  ADS  Google Scholar 

  12. M.G. Paff, M. Monterial, P. Marleau et al., Gamma/neutron time-correlation for special nuclear material detection-active stimulation of highly enriched uranium. Ann. Nucl. Energy 72, 358–366 (2014). https://doi.org/10.1016/j.anucene.2014.06.004

    Article  Google Scholar 

  13. M. Huang, J.Y. Zhu, J. Wu et al., Element analysis method of concealed explosive based on TNA. Nucl. Sci. Tech. 30, 6 (2019). https://doi.org/10.1007/s41365-018-0527-5

    Article  ADS  Google Scholar 

  14. J. Mueller, M. Ahmed, H. Weller, A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission. Nucl. Instrum. Methods A 754, 57–62 (2014). https://doi.org/10.1016/j.nima.2014.03.042

    Article  ADS  Google Scholar 

  15. J. Zier, D. Mosher, R. Allen et al., High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material. Phys. Rev. Spec. Top. 17, 060401 (2014). https://doi.org/10.1103/PhysRevSTAB.17.060401

    Article  ADS  Google Scholar 

  16. B.S. Henderson, H.Y. Lee, T.D. MacDonald et al., Experimental demonstration of multiple monoenergetic gamma radiography for effective atomic number identification in cargo inspection. J. Appl. Phys. 123, 164901 (2018). https://doi.org/10.1063/1.5025805

    Article  ADS  Google Scholar 

  17. H.Y. Lan, T. Song, X.D. Huang et al., Nuclear resonance fluorescence drug inspection. Sci. Rep. 11, 1–9 (2021). https://doi.org/10.1038/s41598-020-80079-6

    Article  Google Scholar 

  18. O. Beck, T. Ruf, Y. Finkelstein et al., Nondestructive determination of the \(^{13}\)C content in isotopic diamond by nuclear resonance fluorescence. J. Appl. Phys. 83, 5484–5488 (1998). https://doi.org/10.1063/1.367378

    Article  ADS  Google Scholar 

  19. R. Hajima, N. Kikuzawa, N. Nishimori et al., Detection of radioactive isotopes by using laser Compton scattered \(\gamma \)-ray beams. Nucl. Instrum. Methods A 608, S57–S61 (2009). https://doi.org/10.1016/j.nima.2009.05.063

    Article  Google Scholar 

  20. D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with \(\gamma \)-beams of high intensity and large brilliance. Appl. Phys. B 103, 501–519 (2011). https://doi.org/10.1007/s00340-010-4278-1

    Article  ADS  Google Scholar 

  21. Y. Yu, B.F. Shen, Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence. Phys. Plasmas 26, 062708 (2019). https://doi.org/10.1063/1.5097641

    Article  ADS  Google Scholar 

  22. T. Hayakawa, H. Ohgaki, T. Shizuma et al., Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays. Rev. Sci. Instrum. (2009). https://doi.org/10.1063/1.3125022

    Article  Google Scholar 

  23. H. Toyokawa, T. Hayakawa, T. Shizuma et al., Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam. Nucl. Instrum. Methods A 652, 21–24 (2011). https://doi.org/10.1016/j.nima.2011.01.158

    Article  ADS  Google Scholar 

  24. R.S. Kemp, A. Danagoulian, R.R. Macdonald et al., Physical cryptographic verification of nuclear warheads. Proc. Natl. Acad. Sci. 113, 8618–8623 (2016). https://doi.org/10.1073/pnas.1603916113

    Article  ADS  Google Scholar 

  25. J.R. Vavrek, B.S. Henderson, A. Danagoulian, Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence. Proc. Natl. Acad. Sci. 115(17), 4363–4368 (2018). https://doi.org/10.1073/pnas.1721278115

    Article  ADS  Google Scholar 

  26. H. Utsunomiya, T. Renstrøm, G. Tveten et al., \(\gamma \)-ray strength function for thallium isotopes relevant to the \(^{205}\)Pb-\(^{205}\)Tl chronometry. Phys. Rev. C 99, 024609 (2019). https://doi.org/10.1103/PhysRevC.99.024609

    Article  ADS  Google Scholar 

  27. C. Ur, A. Zilges, N. Pietralla et al., Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys. 68, S483–S538 (2016)

    Google Scholar 

  28. H.Y. Lan, Y. Xu, W. Luo et al., Determination of the photodisintegration reaction rates involving charged particles: systematic calculations and proposed measurements based on the facility for Extreme Light Infrastructure-Nuclear Physics. Phys. Rev. C 98, 054601 (2018). https://doi.org/10.1103/PhysRevC.98.054601

    Article  ADS  Google Scholar 

  29. Z.C. Zhu, W. Luo, Z.C. Li et al., Photo-transmutation of long-lived nuclear waste \(^{135}\)Cs by intense Compton \(\gamma \)-ray source. Ann. Nucl. Energy 89, 109–114 (2016). https://doi.org/10.1016/j.anucene.2015.11.017

    Article  Google Scholar 

  30. E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering. Energy Convers. Manag. 77, 558–563 (2014). https://doi.org/10.1016/j.enconman.2013.09.029

    Article  Google Scholar 

  31. W. Luo, M. Bobeica, I. Gheorghe et al., Estimates for production of radioisotopes of medical interest at extreme light infrastructure-nuclear physics facility. Appl. Phys. B 122, 8 (2016). https://doi.org/10.1007/s00340-015-6292-9

    Article  ADS  Google Scholar 

  32. W. Luo, D.L. Balabanski, D. Filipescu, A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. Nucl. Sci. Tech. 27, 113 (2016). https://doi.org/10.1007/s41365-016-0111-9

    Article  Google Scholar 

  33. W. Luo, Production of medical radioisotope \(^{64}\)Cu by photoneutron reaction using ELI-NP \(\gamma \)-ray beam. Nucl. Sci. Tech. 27, 96 (2016). https://doi.org/10.1007/s41365-016-0094-6

    Article  ADS  Google Scholar 

  34. O. Artun, Investigation of production of medical \(^{82}\)Sr and \(^{68}\)Ge for \(^{82}\)Sr/\(^{82}\)Rb and \(^{68}\)Ge/\(^{68}\)Ga generators via proton accelerator. Nucl. Sci. Tech. 29, 137 (2018). https://doi.org/10.1007/s41365-018-0474-1

    Article  ADS  Google Scholar 

  35. I. Daito, H. Ohgaki, G. Suliman et al., Simulation study on computer tomography imaging of nuclear distribution by quasi monoenergetic gamma rays with nuclear resonance fluorescence: case study for ELI-NP application. Energy Procedia 89, 389–394 (2016). https://doi.org/10.1016/j.egypro.2016.05.051

    Article  Google Scholar 

  36. G. Suliman, V. Iancu, C. Ur et al., Gamma-beam industrial applications at ELI-NP. Rom. Rep. Phys. 68, S799–S845 (2016)

    Google Scholar 

  37. H. Zen, H. Ohgaki, Y. Taira et al., Demonstration of tomographic imaging of isotope distribution by nuclear resonance fluorescence. AIP Adv. 9, 035101 (2019). https://doi.org/10.1063/1.5064866

    Article  ADS  Google Scholar 

  38. K. Ali, H. Ohgaki, H. Zen et al., Selective isotope CT imaging based on nuclear resonance fluorescence transmission method. IEEE Trans. Nucl. Sci. 67, 1976–1984 (2020). https://doi.org/10.1109/TNS.2020.3004565

    Article  ADS  Google Scholar 

  39. F.R. Metzger, Resonance fluorescence in nuclei. Prog. Nucl. Phys. 7, 54 (1959)

    Google Scholar 

  40. T. Ogawa, S. Hashimoto, T. Sato, Development of general nuclear resonance fluorescence model. J. Nucl. Sci. Technol. 53, 1766–1773 (2016). https://doi.org/10.1080/00223131.2016.1159148

    Article  Google Scholar 

  41. A. Zilges, P. Von Brentano, R.-D. Herzberg et al., Strong dipole excitations around 1.8 MeV in \(^{238}\)U. Phys. Rev. C 52, R468 (1995). https://doi.org/10.1103/PhysRevC.52.R468

    Article  ADS  Google Scholar 

  42. E. Kwan, G. Rusev, A. Adekola et al., Discrete deexcitations in \(^{235}\)U below 3 MeV from nuclear resonance fluorescence. Phys. Rev. C 83, 041601 (2011). https://doi.org/10.1103/PhysRevC.83.041601

    Article  ADS  Google Scholar 

  43. L.W. Fagg, S.S. Hanna, Polarization measurements on nuclear gamma rays. Rev. Mod. Phys. 31, 711 (1959). https://doi.org/10.1103/RevModPhys.31.711

    Article  ADS  Google Scholar 

  44. K. Siegbahn, Alpha-, Beta- and Gamma-Ray Spectroscopy, vol. 2 (North-Holland, Amsterdam, 1965)

    MATH  Google Scholar 

  45. J. Pruet, D.P. Mcnabb, C.A. Hagmann et al., Detecting clandestine material with nuclear resonance fluorescence. J. Appl. Phys. 99, 123102 (2006). https://doi.org/10.1063/1.2202005

    Article  ADS  Google Scholar 

  46. S. Agostinelli, J. Allison, K.A. Amako et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  47. W. Luo, H.Y. Lan, Y. Xu et al., Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies. Nucl. Instrum. Methods A 849, 49–54 (2017). https://doi.org/10.1016/j.nima.2017.01.010

    Article  ADS  Google Scholar 

  48. H.R. Weller, M. Ahmed, Y. Wu, Nuclear physics research at the high intensity gamma-ray source (HI\(\gamma \)S). Nucl. Phys. News 25, 19–24 (2015). https://doi.org/10.1080/10619127.2015.1035932

    Article  Google Scholar 

  49. K. Tanaka, K. Spohr, D.L. Balabanski et al., Current status and highlights of the ELI-NP research program. Matter Radiat. Extrem. 5, 024402 (2020). https://doi.org/10.1063/1.5093535

    Article  Google Scholar 

  50. N. Kikuzawa, R. Hajima, N. Nishimori et al., Nondestructive detection of heavily shielded materials by using nuclear resonance fluorescence with a laser-Compton scattering \(\gamma \)-ray source. Appl. Phys. Express 2, 036502 (2009). https://doi.org/10.1143/APEX.2.036502

    Article  ADS  Google Scholar 

  51. H. Toyokawa, H. Ohgaki, T. Hayakawa et al., Two-dimensional isotope imaging of radiation shielded materials using nuclear resonance fluorescence. Jpn. J. Appl. Phys. 50, 100209 (2011). https://doi.org/10.1143/JJAP.50.100209

    Article  ADS  Google Scholar 

  52. W. Luo, W. Xu, Q.Y. Pan et al., A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instrum. Methods A 660, 108–115 (2011). https://doi.org/10.1016/j.nima.2011.09.035

    Article  ADS  Google Scholar 

  53. A.H. Andersen, A.C. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 6, 81–94 (1984). https://doi.org/10.1016/0161-7346(84)90008-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Luo.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11675075), Youth Talent Project of Hunan Province, China (No. 2018RS3096), Independent Research Project of Key Laboratory of Plasma Physics, CAEP (No. JCKYS2020212006) and Innovation and Entrepreneurship Training Program for College Students of University of South China (No. X2019083)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, HY., Song, T., Zhang, JL. et al. Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy. NUCL SCI TECH 32, 84 (2021). https://doi.org/10.1007/s41365-021-00914-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00914-x

Keywords

Navigation