Skip to main content
Log in

Investigation on symmetry and characteristic properties of the fragmenting source in heavy-ion reactions through reconstructed primary isotope yields

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this report, a kinematical focusing technique will be briefly described, and using this technique, the primary hot isotope yields from the multiplicities of evaporated light particles, associated with isotopically identified intermediate mass fragments, are reconstructed. Symmetry energy and characteristic properties of the fragmenting source at the time of the intermediate mass fragment formation are extracted from these reconstructed primary isotope yields using a self-consistent manner. The extracted density-dependent symmetry energy is further compared with those experimentally extracted from other heavy-ion reactions in literatures. A direct connection between the freeze-out concept and transport model simulations in a multifragmenting regime of heavy-ion collisions is also demonstrated quantitatively in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113 (2008). doi:10.1016/j.physrep.2008.04.005

    Article  Google Scholar 

  2. M.B. Tsang, W.A. Friedman, C.K. Gelbke et al., Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023 (2001). doi:10.1103/PhysRevLett.86.5023

    Article  Google Scholar 

  3. M.B. Tsang, T.X. Liu, L. Shi et al., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions. Phys. Rev. Lett. 92, 062701 (2004). doi:10.1103/PhysRevLett.92.062701

    Article  Google Scholar 

  4. M.A. Famiano, T. Liu, W.G. Lynch et al., Neutron and Proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state. Phys. Rev. Lett. 97, 052701 (2006). doi:10.1103/PhysRevLett.97.052701

    Article  Google Scholar 

  5. T. Li, U. Garg, Y. Liu et al., Isotopic dependence of the giant monopole resonance in the even-A \(^{112-124}\)Sn isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99, 162503 (2007). doi:10.1103/PhysRevLett.99.162503

    Article  Google Scholar 

  6. A. Klimkiewicz, N. Paar, P. Adrich et al., Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances. Phys. Rev. C 76, 051603 (2007). doi:10.1103/PhysRevC.76.051603

    Article  Google Scholar 

  7. L. Trippa, G. Colo, E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys. Rev. C 77, 061304 (2008). doi:10.1103/PhysRevC.77.061304

    Article  Google Scholar 

  8. Z. Kohley, M. Colonna, A. Bonasera et al., Sensitivity of intermediate mass fragment flows to the symmetry energy. Phys. Rev. C 85, 064605 (2012). doi:10.1103/PhysRevC.85.064605

    Article  Google Scholar 

  9. H.S. Xu, M.B. Tsang, T.X. Liu et al., Isospin fractionation in nuclear multifragmentation. Phys. Rev. Lett. 85, 716 (2000). doi:10.1103/PhysRevLett.85.716

    Article  Google Scholar 

  10. M.B. Tsang, C.K. Gelbke, X.D. Liu et al., Isoscaling in statistical models. Phys. Rev. C 64, 054615 (2001). doi:10.1103/PhysRevC.64.054615

    Article  Google Scholar 

  11. M. Huang, Z. Chen, S. Kowalski et al., Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy. Phys. Rev. C 81, 044620 (2010). doi:10.1103/PhysRevC.81.044620

    Article  Google Scholar 

  12. A. Ono, H. Horiuchi, Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of the Vlasov equation. Phys. Rev. C 53, 2958 (1996). doi:10.1103/PhysRevC.53.2958

    Article  Google Scholar 

  13. A. Ono, Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei. Phys. Rev. C 59, 853 (1999). doi:10.1103/PhysRevC.59.853

    Article  Google Scholar 

  14. A. Ono, S. Hudan, A. Chbihi et al., Compatibility of localized wave packets and unrestricted single particle dynamics for cluster formation in nuclear collisions. Phys. Rev. C 66, 014603 (2002). doi:10.1103/PhysRevC.66.014603

    Article  Google Scholar 

  15. A. Ono, H. Horiuchi, Antisymmetrized molecular dynamics for heavy ion collisions. Prog. Part. Nucl. Phys. 53, 501 (2004). doi:10.1016/j.ppnp.2004.05.002

    Article  Google Scholar 

  16. M.R.D. Rodrigues, W. Lin, X. Liu et al., Experimental reconstruction of excitation energies of primary hot isotopes in heavy ion collisions near the Fermi energy. Phys. Rev. C 88, 034605 (2013). doi:10.1103/PhysRevC.88.034605

    Article  Google Scholar 

  17. X. Liu, W. Lin, R. Wada et al., Reconstructed primary fragments and symmetry energy, temperature and density of the fragmenting source in \(^{64}\)Zn + \(^{112}\)Sn source at 40 MeV/nucleon. Nucl. Phys. A 933, 290 (2014). doi:10.1016/j.nuclphysa.2014.09.077

    Article  Google Scholar 

  18. W. Lin, X. Liu, M.R.D. Rodrigues et al., Novel determination of density, temperature, and symmetry energy for nuclear multifragmentation through primary fragment-yield reconstruction. Phys. Rev. C 89, 021601(R) (2014). doi:10.1103/PhysRevC.89.021601

    Article  Google Scholar 

  19. X. Liu, W. Lin, R. Wada et al., Primary isotope yields and characteristic properties of the fragmenting source in heavy-ion reactions near the Fermi energy. Phys. Rev. C 90, 014605 (2014). doi:10.1103/PhysRevC.90.014605

    Article  Google Scholar 

  20. X. Liu, M. Huang, R. Wada et al., Symmetry energy extraction from primary fragments in intermediate heavy-ion collisions. Nucl. Sci. Tech. 26, S20508 (2015). doi:10.13538/j.1001-8042/nst.26.S20508

    Google Scholar 

  21. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967). doi:10.1088/0034-4885/30/2/306

    Article  Google Scholar 

  22. C.W. Ma, J. Pu, Y.G. Ma et al., Temperature determined by isobaric yield ratios in heavy-ion collisions. Phys. Rev. C 86, 054611 (2012). doi:10.1103/PhysRevC.86.054611

    Article  Google Scholar 

  23. C.W. Ma, X.L. Zhao, J. Pu et al., Temperature determined by isobaric yield ratios in a grand-canonical ensemble theory. Phys. Rev. C 88, 014609 (2013). doi:10.1103/PhysRevC.88.014609

    Article  Google Scholar 

  24. C.W. Ma, T.T. Ding, C.Y. Qiao et al., Improved thermometer for intermediate-mass fragments in heavy-ion collisions with isobaric yield ratio difference. Phys. Rev. C 92, 064601 (2015). doi:10.1103/PhysRevC.92.064601

    Article  Google Scholar 

  25. D.T. Khoa, H.S. Than, Isospin dependence of \(^{6}\)He+p optical potential and the symmetry energy. Phys. Rev. C 71, 044601 (2005). doi:10.1103/PhysRevC.71.044601

    Article  Google Scholar 

  26. S. Kowalski, J.B. Natowitz, S. Shlomo et al., Experimental determination of the symmetry energy of a low density nuclear gas. Phys. Rev. C 75, 014601 (2007). doi:10.1103/PhysRevC.75.014601

    Article  Google Scholar 

  27. R. Wada, K. Hagel, L. Qin et al., Nuclear matter symmetry energy at \(0.03<\rho /\rho _0<0.2\). Phys. Rev. C 85, 064618 (2012). doi:10.1103/PhysRevC.85.064618

    Article  Google Scholar 

  28. X. Roca-Maza, M. Brenna, B.K. Agrawal et al., Giant quadrupole resonances in \(^{208}\)Pb, the nuclear symmetry energy, and the neutron skin thickness. Phys. Rev. C 87, 034301 (2013). doi:10.1103/PhysRevC.87.034301

    Article  Google Scholar 

  29. D.V. Shetty, S.J. Yennello, A.S. Botvina et al., Symmetry energy and the isospin dependent equation of state. Phys. Rev. C 70, 011601(R) (2004). doi:10.1103/PhysRevC.70.011601

    Article  Google Scholar 

  30. D.V. Shetty, S.J. Yennello, G.A. Souliotis, Density dependence of the symmetry energy and the nuclear equation of state: a dynamical and statistical model perspective. Phys. Rev. C 76, 024606 (2007). doi:10.1103/PhysRevC.76.024606

    Article  Google Scholar 

  31. M.B. Tsang, Y.X. Zhang, P. Danielewicz et al., Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009). doi:10.1103/PhysRevLett.102.122701

    Article  Google Scholar 

  32. J.B. Natowitz, G. Ropke, S. Typel et al., Symmetry energy of dilute warm nuclear matter. Phys. Rev. Lett. 104, 202501 (2010). doi:10.1103/PhysRevLett.104.202501

    Article  Google Scholar 

  33. K.S. Vinayak, S. Kumar, On the role of density-dependent symmetry energy and momentum dependent interactions in multi-fragmentation. Phys. Part. Nucl. Lett. 9, 583 (2012). doi:10.1134/S1547477112080109

    Article  Google Scholar 

  34. K.S. Vinayak, S. Kumar, Effect of density-dependent symmetry energy on nuclear stopping. J. Phys. G Nucl. Part. Phys. 39, 095105 (2012). doi:10.1088/0954-3899/39/9/095105

    Article  Google Scholar 

  35. H.F. Xi, G.J. Kunde, O. Bjarki et al., Dynamical emission and isotope thermometry. Phys. Rev. C 58, 2636(R) (1998). doi:10.1103/PhysRevC.58.R2636

    Article  Google Scholar 

  36. V. Serfling, C. Schwarz, R. Bassini et al., Temperatures of exploding nuclei. Phys. Rev. Lett. C 80, 3928 (1998). doi:10.1103/PhysRevLett.80.3928

    Article  Google Scholar 

  37. W. Trautmann, R. Bassini, M. Begemann-Blaich et al., Thermal and chemical freeze-out in spectator fragmentation. Phys. Rev. C 76, 064606 (2007). doi:10.1103/PhysRevC.76.064606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Quan Liu or Jian-Song Wang.

Additional information

This work was supported by the Program for the CAS “Light of West China” Program (No. Y601030XB0), the National Basic Research Program of China (No. 2014CB845405) and the National Natural Science Foundation of China (Nos. 11205209 and 11575256).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, FF., Liu, XQ., Lin, WP. et al. Investigation on symmetry and characteristic properties of the fragmenting source in heavy-ion reactions through reconstructed primary isotope yields. NUCL SCI TECH 27, 131 (2016). https://doi.org/10.1007/s41365-016-0138-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0138-y

Keywords

Navigation