Skip to main content
Log in

Deployment of Cicer echinospermum P.H. Davis for resistance to Callosobruchus chinensis L.

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

One of the best methods for the control of bruchid (Chrysomelidae: Bruchinae) is host plant resistance because of protecting human health by supplying foods without residues. Number of genotypes of Cicer echinospermum P.H. Davis, a wild and crossable with domesticated chickpea (C. arietinum L.), is known as limited number, but it has been recently increased thanks to a new collection study. On the other hand, the new collected genotypes of C. echinospermum have not been assessed for resistance the bruchid, Callosobruchus chinensis L. (Chrysomelidae: Bruchinae) that is a common insect pest of chickpea during storage. In the current study, seeds of C. echinospermum and C. arietinum were assessed for resistance to the bruchid using no-choice test under laboratory conditions. Assessment of 53 genotypes of C. echinospermum and three 'kabuli' genotypes of C. arietinum (Azkan, ACC-100 and ACC-101) for resistance to the bruchid was done using number of eggs, number of emerged adults (number of emergence holes), the damaged seed rate and seed weight loss (%). All genotypes of C. echinospermum were categorized as completely resistant due to no holes on seeds, no adult emergence from seeds and no seed weight loss in the tests. Due to resistant to the bruchid of genotypes of C. echinospermum and crossable with domesticated chickpea, germplasm resources can be suggested for resistance to the bruchid in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data are within the manuscript and supplementary materials.

Code availability

Not applicable.

References

  • Adak A, Sari D, Sari H, Toker C (2017) Gene effects of Cicer reticulatum on qualitative and quantitative traits in the cultivated chickpea. Plant Breed 136:939–947. https://doi.org/10.1111/pbr.12547

    Article  CAS  Google Scholar 

  • Ahmad S, Haque A, Mahmud H (2018) Effect of pulse beetle, Callosobruchus chinensis L on oviposition and damage in some important genotypes of pulse crops in Bangladesh. Biomed J 2:5

    Google Scholar 

  • Ahmed K, Khalique F, Khan IA, Afzal M, Malik BA (1993) Genetic differences for susceptibility of chickpea to bruchid beetle (Callosobruchus chinensis L.) attack. Pak J Sci Ind Res 36:96–98

    Google Scholar 

  • Athiepacheco I, Bolonhezi S, Maria RS, Turatti JM, Paula DCD, Lourençao AI (1994) Resistencia a bruquideos, composiçao em acidos graxos e qualidade de cozimento das sementes em genotipos de graode-bico. Bragantia 53:61–74

    Article  Google Scholar 

  • Avidov Z, Harpaz I (1969) Plant pests of Israel. Israel Universities Press, Jerusalem

    Google Scholar 

  • Barbosa DReS, deOliveira JV, daSilva PHS, et al (2021) Lethal and sublethal effects of chemical constituents from essential oils on Callosobruchus maculatus (F) (Coleoptera: Chrysomelidae: Bruchinae) in cowpea stored grains. J Plant Dis Prot 128:1575–1586. https://doi.org/10.1007/s41348-021-00543-x

    Article  Google Scholar 

  • Basbuga S, Basbuga S, Yayla F, Mahmoud AM, Canan C (2021) Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants. Int Microbiol 24:207–218. https://doi.org/10.1007/s10123-020-00158-6

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Abbo S, Turner NC (2003) Ecogeography of annual wild species. Crop Sci 43:1076–1090. https://doi.org/10.2135/cropsci2003.1076

    Article  Google Scholar 

  • Ceylan FO, Adak A, Sari D, Sari H, Toker C (2019) Unveiling of suppressed genes in interspecific and backcross populations derived from mutants of Cicer species. Crop Pasture Sci 70(3):254–262. https://doi.org/10.1071/CP18504

  • Chrigui N, Sari D, Sari H, Eker T, Cengiz MF, Ikten C, Toker C (2021) Introgression of resistance to Leafminer (Liriomyza cicerina Rondani) from Cicer reticulatum Ladiz to C. arietinum L. and relationships between potential biochemical selection criteria. Agronomy 11(1):57. https://doi.org/10.3390/agronomy11010057

    Article  CAS  Google Scholar 

  • Clement SL, El-Din Sharaf El Din N, Weigand S, Lateef SS (1994) Research achievements in plant resistance to insect pests of cool season food legumes. Euphytica 73:41–50. https://doi.org/10.1007/BF00027180

    Article  Google Scholar 

  • Eker T, Erler F, Adak A, Imrek B, Guven H, Tosun HS, Sari D, Sari H, Upadhyaya HD, Toker C, Ikten C (2018) Screening of chickpea accessions for resistance against the pulse beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae). J Stored Prod Res 76:51–57. https://doi.org/10.1016/j.jspr.2017.12.007

    Article  Google Scholar 

  • Eker T, Sari D, Sari H, Tosun HS, Toker C (2021) A kabuli chickpea ideotype. (under press in Sci Rep)

  • Erler F, Erdemir T, Ceylan FO, Toker C (2009b) Fumigant toxicity of three essential oils and their binary and tertiary mixtures against the pulse beetle, Callosobruchus maculatus F. (Coleoptera: Bruchidae). Fresenius Environ Bull 18:975–981

    CAS  Google Scholar 

  • Erler F, Ceylan FO, Erdemir T, Toker C (2009a) Preliminary results on evaluation of chickpea (Cicer arietinum L.) accessions for resistance to Callosobruchus maculatus F. J Insect Sci 9:58. https://doi.org/10.1673/031.009.5801

    Article  Google Scholar 

  • Esen A, Sari H, Erler F, Adak A, Sari D, Eker T, Canci H, Kahraman A, Ikten C, Toker C (2019) Screening and selection of accessions in the genus Pisum L. for resistance to pulse beetle (Callosobruchus chinensis L.). Euphytica 215:82. https://doi.org/10.1007/s10681-019-2395-4

    Article  CAS  Google Scholar 

  • FAOSTAT (2021) Crop statistics. http://www.fao.org/faostat/en/#data/QC

  • Gad HA, Laban GFA, Metwaly KH, Al-Anany FS, Abdelgaleil SA (2021) Efficacy of ozone for Callosobruchus maculatus and Callosobruchus chinensis control in cowpea seeds and its impact on seed quality. J Stored Prod Res 92:101786. https://doi.org/10.1016/j.jspr.2021.101786

    Article  Google Scholar 

  • Gad HA, El-Deeb SE, Al-Anany FS, Abdelgaleil SA (2022) Effectiveness of two inert dusts in conjunction with carbon dioxide for the control of Callosobruchus maculatus and C. chinensis in stored cowpea seeds. J Stored Prod Res 95:101910. https://doi.org/10.1016/j.jspr.2021.101910

    Article  Google Scholar 

  • Guillon F, Champ MJ (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88(S3):293–306. https://doi.org/10.1079/BJN2002720

    Article  CAS  Google Scholar 

  • Ikten C, Sahin I, Ceylan FO, Bereket S, Bolucek E, Uzun B, Toker C (2014) Identification of quantitative trait loci (QTLs) for resistance to cowpea weevil in chickpea. J Biotechnol 185:31. https://doi.org/10.1016/j.jbiotec.2014.07.105

    Article  Google Scholar 

  • Ileke KD (2019) Insecticidal toxicity of two bruchid-resistant cowpea cultivar powders as cowpea seed protectants against Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). Food Qual Saf 3(1):35–39. https://doi.org/10.1093/fqsafe/fyy024

    Article  CAS  Google Scholar 

  • Ingabire JP, Hategekimana A, Bhuvaneswari K, Erler F (2021) Effectiveness of various combinations of three main gases (oxygen, carbon dioxide and nitrogen) through modified atmospheres on pulse beetle, Callosobruchus maculatus (F) population in stored green grams. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00399-y

    Article  Google Scholar 

  • Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P (2017) Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front Plant Sci 8:1692. https://doi.org/10.3389/fpls.2017.01692

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalkan M (1973) Investigation on the species, distribution and percentage of damage of Bruchidae in Central Anatolia. Ankara Bolge Zirai Muc Aras 64:192

    Google Scholar 

  • Keneni G, Bekele E, Imtiaz M, Getu E, Dagne K, Assefa F (2011) Breeding chickpea (Cicer arietinum [Fabaceae]) for better seed quality inadvertently increased susceptibility to adzuki bean beetle (Callosobruchus chinensis [Coleoptera: Bruchidae]). Int J Trop Insect Sci 31(4):249–261. https://doi.org/10.1017/S1742758411000373

    Article  Google Scholar 

  • Kergoat GJ, Silvain JF, Delobel A, Tuda M, Anton KW (2007) Defining the limits of taxonomic conservation in host plant use for phytophagous insects. Molecular systematic and evaluation of host plant association in the seed beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchidae). Mol Phylogenet Evol 43:251–259. https://doi.org/10.1016/j.ympev.2006.11.026

    Article  CAS  PubMed  Google Scholar 

  • Khalequzzaman M, Chowdhury FD (2003) Evaluation of mixtures of plant oils as synergists for pirimiphos-methyl in mixed formulation against Tribolium castaneum (Herbst). OnLine J Biol Sci 3:347–359

    Article  Google Scholar 

  • Khoobdel M, Pourian HR, Alizadeh M (2019) Bio-efficacy of the indigenous entomopathogenic fungus, Beauveria bassiana in conjunction with desiccant dust to control of coleopteran stored product pests. J Invertebr Pathol 168:107254. https://doi.org/10.1016/j.jip.2019.107254

    Article  CAS  PubMed  Google Scholar 

  • Koseoglu K, Adak A, Sari D, Sari H, Ceylan FO, Toker C (2017) Transgressive segregations for yield criteria in reciprocal interspecific crosses between Cicer arietinum L. and C. reticulatum Ladiz. Euphytica 213:116. https://doi.org/10.1007/s10681-017-1903-7

    Article  Google Scholar 

  • Ladizinsky G, Adler A (1976) Genetic relationships among the annual species of Cicer L. Theor Appl Genet 48:197–203

    Article  CAS  Google Scholar 

  • Lal D, Raj DV (2012) Mating, oviposition, fecundity and longevity of Callosobruchus maculatus (Fab.) on different pigeon pea varieties. Bull Env Pharmacol Life Sci 1(11):12–15

    Google Scholar 

  • Lema T (1994) Screening of chickpea accessions against Adzuki bean beetle (Callosobruchus chinensis L.). In: Proceedings of the first annual conference crop protection society of Ethiopia. Addis Abeba, Ethiopia. CPSE, pp 31–32

  • Lüthi C, Álvarez-Alfageme F, Ehlers JD, Higgins TJ, Romeis J (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103(4):373–381. https://doi.org/10.1017/s0007485312000818

    Article  PubMed  Google Scholar 

  • Mahgoub SM, Hamed MS, Ali SM, Gharib MSA (2005) Susceptibility of some Egyptian pulses to infestation by Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.). Egypt J Agric Res 83(4):1601–1612

    Google Scholar 

  • Ngamo-Tinkeu LS, Goudoum A, Ngassoum MB, Mapongmetsem LG, Malaisse F, Hance T (2007) Chronic toxicity of essential oils of 3 local aromatic plants towards Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Afr J Agric Res 2:164–167

    Google Scholar 

  • Pedigo LP (1996) Entomology and pest management. Prentice-Hall Inc, Hoboken, p 679

    Google Scholar 

  • Rai PC, Singh J (1989) Relative susceptibility of chickpea Cicer arietinum L. varieties to pulse beetle C. chinensis (L.). Indian J Agric Sci 59(2):135–136

    Google Scholar 

  • Reed W, Cardona C, Sithanantham S, Lateff SS (1987) The chickpea insect pest and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 283–318

    Google Scholar 

  • Robertson LD, Singh KB, Ocampo B (1995) A catalog of annual wild Cicer species International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5466, Aleppo, Syria, pp 171

  • Sari D, Sari H, Eker T, Ikten C, Uzun B, Toker C (2021) Intraspecific versus interspecific crosses for superior progeny in Cicer spp. (under evaluation in Crop Sci)

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP et al (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14(1):73–82. https://doi.org/10.1023/B:MOLB.0000037996.01494.12

    Article  CAS  Google Scholar 

  • Sarwar M, Ahmad N, Tofique M (2009) Host plant resistance relationships in chickpea (Cicer arietinum L.) against gram pod borer (Helicoverpa armigera) (Hubner). Pak J Bot 41(6):3047–3052

    Google Scholar 

  • Sarwar M (2012) Assessment of resistance to the attack of bean beetle Callosobruchus maculatus (Fabricius) in chickpea accessions on the basis of various parameters during storage. Songklanakarin J Sci Technol 34:287–291

    CAS  Google Scholar 

  • Sathish K, Jaba J, Katlam BP, Mishra SP, Rana DK (2020) Evaluation of chickpea, Cicer arietinum, genotypes for resistance to the pulse beetle, Callosobruchus chinensis (L.). J Entomol Zool 8(3):1002–1006

    Google Scholar 

  • Shafique M, Ahmad M (2005) Chickpea grains resistance to pulse beetle, Callosobruchus analis (F.)(Coleoptera: Bruchidae). Pak J Zool 37(4):123

  • Shaheen FA, Khaliq A, Aslam M (2006) Resistance of chickpea (Cicer arietinum L.) cultivars against pulse beetle. Pak J Bot 38:1237–1244

    Google Scholar 

  • Shaheen FA, Khaliq A (2005) Management of pulse beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae) in stored chickpea using ashes, red soil powder and turpentine oil. Pak J Entomol 27:19–24

    Google Scholar 

  • Sharma HC, Gowda CL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Ranga-Rao GV, Romies J, Miles M, Bouhssini M (2007) Host plant resistance and insect pest management in chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 520–537

    Chapter  Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423. https://doi.org/10.1007/s001220050578

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Halila MH, Knights EJ, Verma MM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73:137–149. https://doi.org/10.1007/BF00027190

    Article  Google Scholar 

  • Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:9–17. https://doi.org/10.1023/A:1008620002136

    Article  Google Scholar 

  • Singh M, Kumar K, Bisht IS, Dutta M, Rana MK, Rana JC, Bansal CK, Sarker A (2015) Exploitation of wild annual Cicer species for widening the gene pool of chickpea cultivars. Plant Breed 134:186–192. https://doi.org/10.1111/pbr.12254

    Article  Google Scholar 

  • Swamy SG, Kamakshi N, Wesley BJ (2019) Relative susceptibility of chickpea varieties to pulse bruchid, Callosobruchus maculatus (F.). J Entomol Zool 7(3):442–446

    Google Scholar 

  • Talip M, Adak A, Kahraman A, Berger J, Sari D, Sari H, Toker C (2018) Agro-morphological traits of Cicer reticulatum Ladizinsky in comparison to C. echinospermum PH Davis in terms of potential to improve cultivated chickpea (C. arietinum L). Genet Resour Crop Evol 65(3):951–962. https://doi.org/10.1007/s10722-017-0587-0

    Article  Google Scholar 

  • Toker C, Yadav SS (2010) Legumes Cultivars for Stress Environments. In: Yadav SS et al (eds) Climate change and management of cool season grain legume crops. Springer, Berlin, pp 351–376

    Chapter  Google Scholar 

  • Toker C, Berger J, Kahraman A, Aydogan A, Can C, Bukun B, Penmetsa RV, von Wettberg EJ, Cook DR (2014a) Cicer reticulatum Ladizinsky, progenitor of the cultivated chickpea (C. arietinum L.). Legume Perspect 5:26–27

    Google Scholar 

  • Toker C, Uzun B, Ceylan FO, Ikten C (2014b) Chickpea. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 2. Achievements and impacts. Springer, Berlin, pp 121–152

    Chapter  Google Scholar 

  • Toker C, Berger J, Eker T, Sari D, Sari H, Gokturk RS, Kahraman A, Aydin B, von Wettberg EJ (2021) Cicer turcicum: A new Cicer species and its potential to improve chickpea. Front Plant Sci 12:662891. https://doi.org/10.3389/fpls.2021.662891

    Article  PubMed  PubMed Central  Google Scholar 

  • Turanlı D, Kısmalı Ş (2011) Investigations on species of the Bruchidae (Coleoptera) on stored legume seeds in Denizli and Uşak provinces. Plant Prot Bull 51:195–205

    Google Scholar 

  • von Wettberg EJB, Chang PL, Başdemir F, Carrasquila-Garcia N et al (2018) Ecology and community genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9:649. https://doi.org/10.1038/s41467-018-02867-z

    Article  CAS  Google Scholar 

  • Weigand S, Tahhan O (1990) Chickpea insect pest in the Mediterranean zones and new approaches to their management. In: Chickpea in nineties: proceedings of the second international workshop on chickpea improvement, Hyderabad, India, pp 169–175

  • Weigand S, Pimbert MP (1993) Screening and selection for insect resistance in cool-season food legumes. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes ICARDA. A Wiley-Sayce Co-Publication, Wiley, Baffins Lane, Chichester, pp 145–156

    Google Scholar 

  • Wood JA, Grusak MA (2007) Nutritional value of chickpea. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 101–142. https://doi.org/10.1079/9781845932138.005

  • Wood JA, Knights EJ, Campbell GM, Choct M (2014a) Differences between easy-and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part I: broad chemical composition. J Sci Food Agric 94(7):1437–1445. https://doi.org/10.1002/jsfa.6437

    Article  CAS  PubMed  Google Scholar 

  • Wood JA, Knights EJ, Campbell GM, Choct M (2014b) Differences between easy-and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part III: free sugar and non-starch polysaccharide composition. J Sci Food Agric 94(7):1454–1462. https://doi.org/10.1002/jsfa.6445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These wild chickpeas were collected within the scope of research project (113O216) financed by TUBITAK. We are also grateful to the Scientific Projects Coordination Unit of Akdeniz University.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Eker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eker, T., Erler, F., Sari, H. et al. Deployment of Cicer echinospermum P.H. Davis for resistance to Callosobruchus chinensis L.. J Plant Dis Prot 129, 843–851 (2022). https://doi.org/10.1007/s41348-021-00560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-021-00560-w

Keywords

Navigation