Skip to main content
Log in

Adsorptive properties investigation of natural sand as adsorbent for methylene blue removal from contaminated water

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the adsorption of cationic dye methylene blue (MB) on two types of natural sand (Agdez, Assa). The raw sand was characterized using X-ray diffraction, Fourier transform infrared, and scanning electron microscopy. To determine optimal conditions, batch adsorption experiments were conducted to study the effects of pH, sand quantity, contact time, solution temperature, and initial MB concentration on the removal process. It has been found that 1 g of our proposed adsorbents (Agdez sand/Assa sand) can achieve the maximum adsorption of MB after 5 min. The results also showed that the kinetics and equilibrium of the MB dye adsorption onto Agdez sand and Assa sand are well described by the pseudo-second-order kinetic and Langmuir models, respectively. The thermodynamic parameters indicate that the MB adsorption onto Agdez sand and Assa sand is governed by physisorption. Desorption studies were examined in six successive cycles using diluted NaOH solution and tap water on adsorbed dye.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Emara MM, Farag RS, Mubarak MF, Ali SK (2020) Synthesis of core–shell activated carbon/CaO composite from Ficus Nitida leaves, as an efficient adsorbent for removal of methylene blue. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-020-00088-8

    Article  Google Scholar 

  2. Chen S, Zhang J, Zhang C et al (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination. https://doi.org/10.1016/j.desal.2009.10.010

    Article  Google Scholar 

  3. Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007

    Article  Google Scholar 

  4. Samchetshabam G, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  5. Shah LA, Sayed M, Fayaz M et al (2017) Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-017-0026-7

    Article  Google Scholar 

  6. Hosseini Koupaie E, Alavi Moghaddam MR, Hashemi SH (2011) Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines. J Hazard Mater 195:147–154. https://doi.org/10.1016/j.jhazmat.2011.08.017

    Article  Google Scholar 

  7. Majhi D, Patra BN (2018) Preferential and enhanced adsorption of dyes on alum doped nanopolyaniline. J Chem Eng Data 63:3427–3437. https://doi.org/10.1021/acs.jced.8b00312

    Article  Google Scholar 

  8. Anfar Z, El Fakir AA, Zbair M et al (2021) New functionalization approach synthesis of sulfur doped, nitrogen doped and co-doped porous carbon: superior metal-free carbocatalyst for the catalytic oxidation of aqueous organics pollutants. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126660

    Article  Google Scholar 

  9. Liu H, Zhang J, Lu M et al (2020) Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chem Eng J 387:124202. https://doi.org/10.1016/j.cej.2020.124202

    Article  Google Scholar 

  10. Sharma A, Syed Z, Brighu U et al (2019) Adsorption of textile wastewater on alkali-activated sand. J Clean Prod 220:23–32. https://doi.org/10.1016/j.jclepro.2019.01.236

    Article  Google Scholar 

  11. Manholer DD, de Souza MTF, Ambrosio E et al (2019) Coagulation/flocculation of textile effluent using a natural coagulant extracted from Dillenia indica. Water Sci Technol 80:979–988. https://doi.org/10.2166/wst.2019.342

    Article  Google Scholar 

  12. Wong S, Ghafar NA, Ngadi N et al (2020) Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci Rep 10:2928. https://doi.org/10.1038/s41598-020-60021-6

    Article  Google Scholar 

  13. Hu H, Xu K (2019) Physicochemical technologies for HRPs and risk control. In: High-risk pollutants in wastewater. https://doi.org/10.1016/B978-0-12-816448-8.00008-3

  14. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci. https://doi.org/10.1007/s13201-015-0322-y

    Article  Google Scholar 

  15. Mirzaei N, Hadi M, Gholami M et al (2016) Sorption of acid dye by surfactant modificated natural zeolites. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2015.07.010

    Article  Google Scholar 

  16. Mohammed WT, Farhood HF, Hassoon A, Al-mas B (2009) Removal of dyes from wastewater of textile industries using activated carbon and activated alumina. Iraqi J Chem Pet Eng 10:43–52

    Google Scholar 

  17. Zehra T, Priyantha N, Lim LBL (2016) Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environ Earth Sci 75:357. https://doi.org/10.1007/s12665-016-5255-8

    Article  Google Scholar 

  18. Zbair M, Ojala S, Khallok H et al (2019) Structured carbon foam derived from waste biomass: application to endocrine disruptor adsorption. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06302-8

    Article  Google Scholar 

  19. Pradeep Sekhar C, Kalidhasan S, Rajesh V, Rajesh N (2009) Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere 77:842–847. https://doi.org/10.1016/j.chemosphere.2009.07.068

    Article  Google Scholar 

  20. Dai Y, Sun Q, Wang W et al (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

    Article  Google Scholar 

  21. Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater. https://doi.org/10.1016/S0304-3894(03)00146-8

    Article  Google Scholar 

  22. Varlikli C, Bekiari V, Kus M et al (2009) Adsorption of dyes on Sahara desert sand. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2009.05.030

    Article  Google Scholar 

  23. Nebagha KC, Ziat K, Rghioui L, Khayet M (2015) Adsorptive removal of copper(II) from aqueous solutions using low cost. Moroccan adsorbent Part I : Parameters influencing Cu(II) adsorption. J Mater Environ Sci 6:3022–3033

    Google Scholar 

  24. Balabin RM, Syunyaev RZ (2008) Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2007.10.045

    Article  Google Scholar 

  25. Abbaz M, Benafqir M, El Haouti R et al (2017) Evaluation of the texture properties and adsorption affinity of grain surface of hematite sand (Agadir region). Appl J Environ Eng Sci 2:121–130

    Google Scholar 

  26. Benafqir M, Anfar Z, Abbaz M et al (2019) Hematite–titaniferous sand as a new low-cost adsorbent for orthophosphates removal: adsorption, mechanism and process capability study. Environ Technol Innov 13:153–165. https://doi.org/10.1016/j.eti.2018.10.009

    Article  Google Scholar 

  27. Mukhopadhyay S, Masto RE, Tripathi RC, Srivastava NK (2019) Application of soil quality indicators for the phytorestoration of mine spoil dumps. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, pp 361–388

    Chapter  Google Scholar 

  28. Ledoux E, Goblet P, Bruel D (2012) Hydrogeological features relevant to radionuclide migration in the natural environment. In: Poinssot C, Geckeis H (eds) Radionuclide behaviour in the natural environment. Elsevier, pp 229–260

    Chapter  Google Scholar 

  29. Zbair M, Ait Ahsaine H, Anfar Z (2018) Porous carbon by microwave assisted pyrolysis: an effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.08.155

    Article  Google Scholar 

  30. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I solids. J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  Google Scholar 

  31. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:1100–1107

    Google Scholar 

  32. Rhall K, Leec E, Acrivos A (1966) Pore and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Eng Chem Fundam. https://doi.org/10.1021/i160018a011

    Article  Google Scholar 

  33. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe (About the theory of so-called adsorption of soluble substances). K Sven VetenskapsakademiensHandlingar

  34. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  35. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Article  Google Scholar 

  36. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  Google Scholar 

  37. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  Google Scholar 

  38. Ouasfi N, Zbair M, Sabbar EM, Khamliche L (2019) High performance of Zn–Al–CO3 layered double hydroxide for anionic reactive blue 21 dye adsorption: kinetic, equilibrium, and thermodynamic studies. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-019-0063-5

    Article  Google Scholar 

  39. Bouzikri S, Ouasfi N, Benzidia N et al (2020) Marine alga “Bifurcaria bifurcata”: biosorption of reactive blue 19 and methylene blue from aqueous solutions. Environ Sci Pollut Res 27:33636–33648

    Article  Google Scholar 

  40. Boujelben N, Bouzid J, Elouear Z (2009) Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems. J Hazard Mater 163:376–382

    Article  Google Scholar 

  41. Al-Degs YS, El-Barghouthi MI, Issa AA et al (2006) Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40:2645–2658

    Article  Google Scholar 

  42. Xu Y, Axe L (2005) Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. J Colloid Interface Sci 282:11–19

    Article  Google Scholar 

  43. Zbair M, Ainassaari K, Drif A et al (2018) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0634-6

    Article  Google Scholar 

  44. Fathy M, Zayed MA, Mohamed AMG (2019) Phosphate adsorption from aqueous solutions using novel Zn Fe/Si MCM-41 magnetic nanocomposite: characterization and adsorption studies. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-019-0061-7

    Article  Google Scholar 

  45. Anfar Z, El Haouti R, Lhanafi S et al (2017) Treated digested residue during anaerobic co-digestion of Agri-food organic waste: methylene blue adsorption, mechanism and CCD-RSM design. J Environ Chem Eng 5:5857–5867. https://doi.org/10.1016/j.jece.2017.11.015

    Article  Google Scholar 

  46. Zbair M, Anfar Z, Khallok H et al (2018) Adsorption kinetics and surface modeling of aqueous methylene blue onto activated carbonaceous wood sawdust. Fuller Nanotub Carbon Nanostruct 26:433–442. https://doi.org/10.1080/1536383X.2018.1447564

    Article  Google Scholar 

  47. dos Reis GS, Pavan FA, Leite AJB et al (2017) Activated carbon from avocado seeds for the removal of phenolic compounds from aqueous solutions. Desalin Water Treat 71:168–181. https://doi.org/10.5004/dwt.2017.20540

    Article  Google Scholar 

  48. Kasperiski FM, Lima EC, Umpierres CS et al (2018) Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions. J Clean Prod 197:919–929. https://doi.org/10.1016/j.jclepro.2018.06.146

    Article  Google Scholar 

  49. Lima ÉC, Adebayo MA, Machado FM (2015) Kinetic and equilibrium models of adsorption. In: Bergmann CP, Machado FM (eds) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Cham, pp 33–69

    Chapter  Google Scholar 

  50. Benzidia N, Salhi A, Bakkas S, Khamliche L (2015) Biosorption of Copper Cu(II) in aqueous solution by chemically modified crushed marine algae (Bifurcaria bifurcata): equilibrium and kinetic studies. Mediterr J Chem 4:85–92

    Google Scholar 

  51. Ouasfi N, Bouzekri S, Zbair M et al (2019) Carbonaceous material prepared by ultrasonic assisted pyrolysis from algae (Bifurcaria bifurcata): response surface modeling of aspirin removal. Surf Interfaces 14:61–71. https://doi.org/10.1016/j.surfin.2018.11.008

    Article  Google Scholar 

  52. Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F

    Article  Google Scholar 

  53. Dotto GL, Santos JMN, Rodrigues IL et al (2015) Adsorption of methylene blue by ultrasonic surface modified chitin. J Colloid Interface Sci 446:133–140. https://doi.org/10.1016/j.jcis.2015.01.046

    Article  Google Scholar 

  54. Rehman MSU, Kim I, Han J-I (2012) Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr Polym 90:1314–1322. https://doi.org/10.1016/j.carbpol.2012.06.078

    Article  Google Scholar 

  55. Sarat Chandra T, Mudliar SN, Vidyashankar S et al (2015) Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics. Bioresour Technol 184:395–404. https://doi.org/10.1016/j.biortech.2014.10.018

    Article  Google Scholar 

  56. Fungaro DA, Bruno M, Grosche LC (2009) Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash. Desalin Water Treat 2:231–239. https://doi.org/10.5004/dwt.2009.305

    Article  Google Scholar 

  57. Zbair M, Anfar Z, Ait Ahsaine H et al (2018) Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.10.058

    Article  Google Scholar 

  58. Tran HN, You S-J, Chao H-P (2017) Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manag 188:322–336. https://doi.org/10.1016/j.jenvman.2016.12.003

    Article  Google Scholar 

  59. Zbair M, Bottlinger M, Ainassaari K et al (2018) Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste Biomass Valoriz 11:1565–1584. https://doi.org/10.1007/s12649-018-00554-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Ibn Zohr Faculty of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Amjlef.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjlef, A., Khrach, S., Ait El Fakir, A. et al. Adsorptive properties investigation of natural sand as adsorbent for methylene blue removal from contaminated water. Nanotechnol. Environ. Eng. 6, 26 (2021). https://doi.org/10.1007/s41204-021-00119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00119-y

Keywords

Navigation