Skip to main content

Advertisement

Log in

Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Plants are incessantly challenged by bacterial, fungal and viral pathogens, and together with climate change, the global food security is severely threatened. Nanotechnology provides promising alternatives to conventional approaches (pesticides and antibiotics) for plant disease management, due to their unique physiochemical properties, including small size (1–100 nm), large active surface area, solubility and prolonged residual activity. Previously, antimicrobial properties of silver (Ag) have been repurposed in physiochemically synthesized nanoparticles (AgNPs) to kill plant pathogens. In the last decade, to bypass using such ecologically damaging synthesis techniques, several environment friendly synthesis processes, of which intracellular or extracellular synthesis of AgNPs by microorganisms like bacteria, fungi, algae and plant extracts, have gained attention. ‘Green’ synthesis of AgNPs in plant and microbial nanobiofactories is rapid, eco-friendly and readily scalable and determined by multiple synthesis parameters. Biosynthesized AgNPs proved to be substantially effective against bacterial, fungal and viral phytopathovars, both in vitro and in greenhouse experiments, and were evaluated as competent agrichemical substitutes for bactericides, fungicides and nematicides. Mechanistic insights into the tripartite interaction between plant, pathogen and nanoparticles confirm the ability of AgNPs, 1) to damage membrane integrity and induce oxidative stress in phytopathogens and 2) to modulate transcription, protein expression and metabolic profile of host plant. The antimicrobial activity of biosynthesized AgNPs augmented with their potential to modify defence mechanisms of host plants, can be exploited for developing nanobioweapons that will be integral to disease management strategies, thereby assisting global food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

ROS:

Reactive oxygen species

MS:

Mass spectrometry

SAR:

Systemic acquired resistance

References

  1. Pachauri R, Reisinger A (2008) Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report. Cambridge University Press, Cambridge

  2. Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14

    Article  Google Scholar 

  3. Pareek A, Dhankher OP, Foyer CH (2020) Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J Exp Bot 71(2):451–456

    Article  Google Scholar 

  4. Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S, Haesebrouck F, Van Immerseel F, Croubels S (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6(2):430–452

    Article  Google Scholar 

  5. Baweja P, Kumar S, Kumar G (2020) Fertilizers and pesticides: their impact on soil health and environment. In: Soil health. Springer, pp 265–285

  6. Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4(4):767–781

    Article  Google Scholar 

  7. Elmer W, Ma C, White J (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Health 6:66–70

    Article  Google Scholar 

  8. Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  Google Scholar 

  9. Clement JL, Jarrett PS (1994) Antibacterial silver. Met-Based Drugs 1(5–6):467–482

    Article  Google Scholar 

  10. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  Google Scholar 

  11. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Article  Google Scholar 

  12. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    Google Scholar 

  13. Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Adv 5(127):105003–105037

    Article  Google Scholar 

  14. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2(1):1–11

    Article  Google Scholar 

  15. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  Google Scholar 

  16. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47(1):844–851

    Article  Google Scholar 

  17. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84

    Article  Google Scholar 

  18. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29(4):279–306

    Article  Google Scholar 

  19. Ali M, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum M, Wang Y, An Q, Sun G, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10(6):1146

    Article  Google Scholar 

  20. Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102(16):6799–6814

    Article  Google Scholar 

  21. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9(5):2673–2702

    Article  Google Scholar 

  22. Fang X, Wang Y, Wang Z, Jiang Z, Dong M (2019) Microorganism assisted synthesized nanoparticles for catalytic applications. Energies 12(1):190

    Article  Google Scholar 

  23. Javaid A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience 8(1):43–59

    Article  Google Scholar 

  24. Ahmed T, Shahid M, Noman M, Niazi MBK, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y, Yan C (2020) Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9(3):160

    Article  Google Scholar 

  25. Haefeli C, Franklin C, Hardy KE (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158(1):389–392

    Article  Google Scholar 

  26. John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S (2020) Synthesis of bioactive silver nanoparticles by a pseudomonas strain associated with the antarctic psychrophilic protozoon Euplotes focardii. Mar Drugs 18(1):38

    Article  Google Scholar 

  27. Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87(7):932–937

    Article  Google Scholar 

  28. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol 44(6):1569–1575

    Article  Google Scholar 

  29. Ashraf N, Ahmad F, Jing Jie C, Di Tuo Z, Feng-Zhu Z, Yin D-C (2019) Optimization of Enterobacter cloacae mediated synthesis of extracellular silver nanoparticles by response surface methodology and their characterization. Part Sci Technol 38(8):931–943

    Article  Google Scholar 

  30. Hamida RS, Ali MA, Redhwan A, Bin-Meferij MM (2020) Cyanobacteria—a promising platform in green nanotechnology: a review on nanoparticles fabrication and their prospective applications. Int J Nanomed 15:6033

    Article  Google Scholar 

  31. Sahoo CR, Maharana S, Mandhata CP, Bishoyi AK, Paidesetty SK, Padhy RN (2020) Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi J Biol Sci 27(6):1580–1586

    Article  Google Scholar 

  32. Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9(1):1–17

    Article  Google Scholar 

  33. Vanlalveni C, Rajkumari K, Biswas A, Adhikari PP, Lalfakzuala R, Rokhum L (2018) Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: a novel biological approach. BioNanoScience 8(2):624–631

    Article  Google Scholar 

  34. Mishra S, Singh BR, Naqvi AH, Singh H (2017) Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep 7:45154

    Article  Google Scholar 

  35. Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58–8. Bull Mater Sci 35(7):1201–1205

    Article  Google Scholar 

  36. Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100

    Article  Google Scholar 

  37. Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64(6):401–408

    Article  Google Scholar 

  38. Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51(1):45–54

    Article  Google Scholar 

  39. Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN, Tsertsvadze GI, Frontasyeva MV, Zinicovscaia II, Wakstein MS (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4(11–12):3408–3417

    Article  Google Scholar 

  40. Otari S, Patil R, Nadaf N, Ghosh S, Pawar S (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94

    Article  Google Scholar 

  41. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  Google Scholar 

  42. Guilger-Casagrande M, de Lima R (2019) Synthesis of silver nanoparticles mediated by fungi: A Review. Front Bioeng Biotechnol 7:287

    Article  Google Scholar 

  43. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144

    Article  Google Scholar 

  44. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71(1):133–137

    Article  Google Scholar 

  45. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  46. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83(1):42–48

    Article  Google Scholar 

  47. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZM, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216

    Article  Google Scholar 

  48. Hulikere MM, Joshi CG (2019) Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Aspergillus niger. Process Biochem 82:199–204

    Article  Google Scholar 

  49. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:408021

    Article  Google Scholar 

  50. Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44(1):235–239

    Article  Google Scholar 

  51. Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz MI (2016) Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 51(9):1306–1313

    Article  Google Scholar 

  52. Waghmare SR, Mulla MN, Marathe SR, Sonawane KD (2015) Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5(1):33–38

    Article  Google Scholar 

  53. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074

    Article  Google Scholar 

  54. Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF (2015) Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2:379–401

    Article  Google Scholar 

  55. Thangavelu RM, Sundarajan D, Savaas Umar MR, Denison MIJ, Gunasekaran D, Rajendran G, Duraisamy N, Kathiravan K (2018) Developing a programmable, self-assembling squash leaf curl china virus (SLCCNV) capsid proteins into “nanocargo”-like architecture. ACS Appl Bio Mater 1(5):1741–1757

    Article  Google Scholar 

  56. Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K (2020) Fabrication of virus metal hybrid nanomaterials: an ideal reference for bio semiconductor. Arab J Chem 13(1):2750–2765

    Article  Google Scholar 

  57. Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S (2020) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498

    Article  Google Scholar 

  58. Aboelfetoh EF, El-Shenody RA, Ghobara MM (2017) Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess 189(7):349

    Article  Google Scholar 

  59. Selvam GG, Sivakumar K (2015) Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) JV Lamouroux. Appl Nanosci 5(5):617–622

    Article  Google Scholar 

  60. Prasad TN, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25(1):177–182

    Article  Google Scholar 

  61. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Cystophora moniliformis and their antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504

    Article  Google Scholar 

  62. Sathishkumar R, Sundaramanickam A, Srinath R, Ramesh T, Saranya K, Meena M, Surya P (2019) Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 23(8):1180–1191

    Article  Google Scholar 

  63. Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandian A (2020) Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste Biomass Valoriz 11:5255–5271

    Article  Google Scholar 

  64. Kumar P, Selvi SS, Govindaraju M (2013) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 3(6):495–500

    Article  Google Scholar 

  65. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18

    Article  Google Scholar 

  66. Balashanmugam P, Kim HJ, Singh V, Kumaran RS (2018) Green synthesis of silver nanoparticles using ginkgo biloba and their bactericidal and larvicidal effects. Nanosci Nanotechnol Lett 10(3):422–428

    Article  Google Scholar 

  67. Roy P, Das B, Mohanty A, Mohapatra S (2017) Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci 7(8):843–850

    Article  Google Scholar 

  68. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13(7):2981–2988

    Article  Google Scholar 

  69. Nithya Deva Krupa A, Raghavan V (2014) Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. Bioinorg Chem Appl 2014:949538

    Article  Google Scholar 

  70. Sreekanth T, Nagajyothi P, Muthuraman P, Enkhtaivan G, Vattikuti S, Tettey C, Kim DH, Shim J, Yoo K (2018) Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B 188:6–11

    Article  Google Scholar 

  71. Rajesh M, Muralikrishna K, Nair SS, Kumar BK, Subrahmanya T, Sonu K, Subaharan K, Sweta H, Prasad TK, Chandran N (2020) Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties. Mater Sci Eng C 111:110834

    Article  Google Scholar 

  72. Gajendran B, Durai P, Varier KM, Liu W, Li Y, Rajendran S, Nagarathnam R, Chinnasamy A (2019) Green synthesis of silver nanoparticle from Datura inoxia flower extract and its cytotoxic activity. BioNanoScience 9(3):564–572

    Article  Google Scholar 

  73. Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv Natl Sci Nanosci Nanotechnol 8(4):045016

    Article  Google Scholar 

  74. Shahzad A, Saeed H, Iqtedar M, Hussain SZ, Kaleem A, Abdullah R, Sharif S, Naz S, Saleem F, Aihetasham A (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater 2019:5168698

    Article  Google Scholar 

  75. Dada AO, Inyinbor AA, Idu EI, Bello OM, Oluyori AP, Adelani-Akande TA, Okunola AA, Dada O (2018) Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ 6:e5865

    Article  Google Scholar 

  76. Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934

    Article  Google Scholar 

  77. Chouhan N (2018) Silver nanoparticles: synthesis, characterization and applications. Silver Nanoparticles-Fabrication, Characterization and Applications, pp 21–56

  78. Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  Google Scholar 

  79. Jung J-H, Kim S-W, Min J-S, Kim Y-J, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45

    Article  Google Scholar 

  80. Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. In: Solid state phenomena, 2008. Trans Tech Publ, pp 15–18

  81. Lamsa K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    Article  Google Scholar 

  82. Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261

    Google Scholar 

  83. Nagarajan R (2008) Nanoparticles: building blocks for nanotechnology. In. ACS Publications, ACS Symposium Series, Vol. 996, Chapter 1, pp 2–14

  84. Chen J, Li S, Luo J, Wang R, Ding W (2016) Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomater 2016

  85. Dzimitrowicz A, Motyka-Pomagruk A, Cyganowski P, Babinska W, Terefinko D, Jamroz P, Lojkowska E, Pohl P, Sledz W (2018) Antibacterial activity of fructose-stabilized silver nanoparticles produced by direct current atmospheric pressure glow discharge towards quarantine pests. Nanomaterials 8(10):751

    Article  Google Scholar 

  86. Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78(10):M1589–M1594

    Article  Google Scholar 

  87. Kim H-J, Park H-J, Choi S-H (2011) Antimicrobial action effect and stability of nanosized silica hybrid Ag complex. J Nanosci Nanotechnol 11(7):5781–5787

    Article  Google Scholar 

  88. Chu H, Kim H-J, Kim JS, Kim M-S, Yoon B-D, Park H-J, Kim CY (2012) A nanosized Ag–silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiat Phys Chem 81(2):180–184

    Article  Google Scholar 

  89. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  Google Scholar 

  90. Strayer A, Ocsoy I, Tan W, Jones J, Paret M (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 100(7):1460–1465

    Article  Google Scholar 

  91. Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    Article  Google Scholar 

  92. Mustafa G, Hasan M, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S (2020) A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J Proteom 224:103833

    Article  Google Scholar 

  93. Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Li B, Mo J, Chen J (2019) Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv 9(50):29293–29299

    Article  Google Scholar 

  94. Rajesh S, Raja DP, Rathi J, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119

    Google Scholar 

  95. Vanti GL, Nargund VB, Vanarchi R, Kurjogi M, Mulla SI, Tubaki S, Patil RR (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33(1):e4630

    Article  Google Scholar 

  96. Hossain A, Hong X, Ibrahim E, Li B, Sun G, Meng Y, Wang Y, An Q (2019) Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules 24(12):2303

    Article  Google Scholar 

  97. Ali KA, Yao R, Wu W, Masum MMI, Luo J, Wang Y, Zhang Y, An Q, Sun G, Li B (2020) Biosynthesis of silver nanoparticle from pomelo (Citrus Maxima) and their antibacterial activity against acidovorax oryzae RS-2. Mater Res Express 7(1):015097

    Article  Google Scholar 

  98. Masum M, Islam M, Siddiqa M, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae Strain RS-2 of rice bacterial brown stripe. Front Microbiol 10:820

    Article  Google Scholar 

  99. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:829894

    Article  Google Scholar 

  100. Gautam N, Salaria N, Thakur K, Kukreja S, Yadav N, Yadav R, Goutam U (2020) Green silver nanoparticles for phytopathogen control. Proc Natl Acad Sci India Sect B Biol Sci 90(2):439–446

    Article  Google Scholar 

  101. Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Rico-Garcia E, Ocampo-Velazquez RV, Avila-Juarez L, Torres-Pacheco I (2020) Nanoparticles as potential antivirals in agriculture. Agriculture 10(10):444

    Article  Google Scholar 

  102. Jain D, Kothari S (2014) Green synthesis of silver nanoparticles and their application in plant virus inhibition. J Mycol Plant pathol 44(1):21–24

    Google Scholar 

  103. Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453

    Article  Google Scholar 

  104. Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B (2020) Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against Wheat fusarium head blight pathogen Fusarium graminearum. Nanomaterials 10(2):219

    Article  Google Scholar 

  105. Kaur P, Thakur R, Duhan JS, Chaudhury A (2018) Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). J Chem Technol Biotechnol 93(11):3233–3243

    Article  Google Scholar 

  106. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 9(5):e97881

    Article  Google Scholar 

  107. Fouda A, Hassan SE-D, Abdo AM, El-Gamal MS (2019) Antimicrobial, Antioxidant and Larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biological Trace Element Res 1–18

  108. Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28(1):28

    Article  Google Scholar 

  109. Kumari M, Pandey S, Bhattacharya A, Mishra A, Nautiyal C (2017) Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiol Biochem 121:216–225

    Article  Google Scholar 

  110. Balakumaran M, Ramachandran R, Kalaichelvan P (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17

    Article  Google Scholar 

  111. Elgorban A, Aref S, Seham S, Elhindi K, Bahkali A, Sayed S, Manal M (2016) Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7(6):844–852

    Article  Google Scholar 

  112. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2015) Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology 105(9):1183–1190

    Article  Google Scholar 

  113. Jagana D, Hegde YR, Lella R (2017) Green nanoparticles: A novel approach for the management of banana anthracnose caused by Colletotrichum musae. Int J Curr Microbiol Appl Sci 6(10):1749–1756

    Article  Google Scholar 

  114. Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192

    Article  Google Scholar 

  115. Abdellatif KF, Abdelfattah RH, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250

    Article  Google Scholar 

  116. Nassar A (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Article  Google Scholar 

  117. Hamed SM, Hagag ES, Abd El-Raouf N (2019) Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef Univ J Basic Appl Sci 8(1):9

    Article  Google Scholar 

  118. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10(6):862–876

    Article  Google Scholar 

  119. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Article  Google Scholar 

  120. Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644

    Article  Google Scholar 

  121. Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5(2):436–467

    Article  Google Scholar 

  122. Thiruvengadam M, Gurunathan S, Chung I-M (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252(4):1031–1046

    Article  Google Scholar 

  123. Kruszka D, Sawikowska A, Selvakesavan RK, Krajewski P, Kachlicki P, Franklin G (2020) Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci Total Environ 716:135361

    Article  Google Scholar 

  124. Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, Dwivedi S, Pandey AK, Nautiyal CS, Mishra A (2020) Omics-based mechanistic insight into the role of bioengineered nanoparticles for biotic stress amelioration by modulating plant metabolic pathways. Front Bioeng Biotechnol 8:242

    Article  Google Scholar 

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board, Government of India through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] is gratefully acknowledged. Financial support from the DBT-RA Program in Biotechnology and Life Sciences is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Dr. AP drafted the manuscript. Dr. AR critically analysed the manuscript, incorporated necessary modifications and supervised the overall work.

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in publishing this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Roychoudhury, A. Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens. Nanotechnol. Environ. Eng. 6, 10 (2021). https://doi.org/10.1007/s41204-021-00103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00103-6

Keywords

Navigation