Skip to main content

Advertisement

Log in

Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted and reproduced with permission from Ref. [9]. Copyright 2019 American Chemical Society

Fig. 2
Fig. 3

Reproduced with permission from Ref. [1]. Copyright 2006 Wiley-VCH Verlag GmBH

Fig. 4

Reproduced with permission from [51]. Copyright 2020 American Chemical Society

Fig. 5

Reproduced with permission from Ref. [81]. Copyright 2017 American Chemical Society

Fig. 6

Reproduced with permission from Ref. [47]. Copyright 2019 American Chemical Society

Fig. 7

Reproduced with permission from Ref. [111]. Copyright 2013 American Chemical Society

Fig. 8

Reproduced with permission from Ref. [120]. Copyright 2012 American Chemical Society

Fig. 9
Fig. 10

Reproduced with permission from Ref. [46]. Copyright 2014 American Chemical Society

Fig. 11

Reproduced with permission from Ref. [181]. Copyright 2021 Elsevier

Fig. 12

Reproduced with permission from Ref. [187]. Copyright 2021 Nature Publishing Group

Fig. 13

Reproduced with permission from Ref. [76]. Copyright 2018 Elsevier

Fig. 14

Reproduced with permission from Ref. [199]. Copyright 2020 Elsevier

Fig. 15

Reproduced with permission from Ref. [202]. Copyright 2022 Elsevier

Fig. 16

Reproduced with permission from Ref. [208]. Copyright 2022 Elsevier

Fig. 17
Fig. 18

Reprinted with permission from Ref. [227]. Copyright 2020 American Chemical Society

Fig. 19

Similar content being viewed by others

References

  1. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984. https://doi.org/10.1002/anie.200503779

    Article  CAS  Google Scholar 

  2. Kosaka K, Yamada H, Shishida K, Echigo S, Minear RA, Tsuno H, Matsui S (2001) Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water Res 35:3587–3594. https://doi.org/10.1016/S0043-1354(01)00087-2

    Article  CAS  PubMed  Google Scholar 

  3. Hu Y, Dong C, Wang T, Luo G (2018) Cyclohexanone ammoximation over TS-1 catalyst without organic solvent in a microreaction system. Chem Eng Sci 187:60–66. https://doi.org/10.1016/j.ces.2018.04.044

    Article  CAS  Google Scholar 

  4. Lin M, Xia C, Zhu B, Li H, Shu X (2016) Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study. Chem Eng J 295:370–375. https://doi.org/10.1016/j.cej.2016.02.072

    Article  CAS  Google Scholar 

  5. Lu J, Zhang X, Bravo-Suárez JJ, Fujitani T, Oyama ST (2009) Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2. Catal Today 147:186–195. https://doi.org/10.1016/j.cattod.2008.09.005

    Article  CAS  Google Scholar 

  6. Signorile M, Crocellà V, Damin A, Rossi B, Lamberti C, Bonino F, Bordiga S (2018) Effect of Ti speciation on catalytic performance of TS-1 in the hydrogen peroxide to propylene oxide reaction. J Phys Chem C 122:9021–9034. https://doi.org/10.1021/acs.jpcc.8b01401

    Article  CAS  Google Scholar 

  7. Jennings SR, Dollhopf DJ, Inskeep WP (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Appl Geochem 15:235–243. https://doi.org/10.1016/S0883-2927(99)00041-4

    Article  CAS  Google Scholar 

  8. Samanta C (2008) Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl Catal A Gen 350:133–149. https://doi.org/10.1016/j.apcata.2008.07.043

    Article  CAS  Google Scholar 

  9. Liu J, Zou Y, Jin B, Zhang K, Park JH (2019) Hydrogen peroxide production from solar water oxidation. ACS Energy Lett 4:3018–3027. https://doi.org/10.1021/acsenergylett.9b02199

    Article  CAS  Google Scholar 

  10. Hydrogen Peroxide Market—Global Industry Analysis (2018–2021)—Growth Trends and Market Forecast (2022–2026). Research and Markets (2022)

  11. Thénard LJ (1818) Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Ann Chim Phys 8:306–312

    Google Scholar 

  12. Ranganathan S, Sieber V (2018) Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—a review. Catalysts 8:379

    Article  Google Scholar 

  13. Jones CW, Clark JH (1999) Introduction to the preparation and properties of hydrogen peroxide. In: Jones CW, Clark JH (eds) Applications of hydrogen peroxide and derivatives. The Royal Society of Chemistry, London, pp 1–36

    Chapter  Google Scholar 

  14. Goor G (1992) Hydrogen peroxide: manufacture and industrial use for production of organic chemicals. In: Strukul G (ed) Catalytic oxidations with hydrogen peroxide as oxidant. Springer Netherlands, Dordrecht, pp 13–43

    Chapter  Google Scholar 

  15. Goor G, Glunneber SJ (2012) Hydrogen peroxide Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  16. Thénard LJ (1818) Nouvelles observations sur les acides et les oxydes oxygénés. Ann Chim Phys 9:51–56

    Google Scholar 

  17. Meidinger H (1853) Ueber voltametrische Messungen. Justus Liebigs Ann Chem 88:57–81. https://doi.org/10.1002/jlac.18530880103

    Article  Google Scholar 

  18. Berthelot M (1878) Sur la formation de l’eau oxygénée, de l’ozone et de l’acide persulfurique pendant l’électrolyse. C R l’Acad Sci Ser II Univers 86:71–76

    Google Scholar 

  19. Manchot W (1901) Über Sauerstoffaktivierung. Justus Liebigs Ann Chem 314:177–199. https://doi.org/10.1002/jlac.19013140117

    Article  Google Scholar 

  20. Manchot W, Herzog J (1901) Ueber die Oxydation des Indigweisses durch Sauerstoffgas. Justus Liebigs Ann Chem 316:318–330. https://doi.org/10.1002/jlac.19013160305

    Article  Google Scholar 

  21. Manchot W, Herzog J (1901) Die Autoxydation des Hydrazobenzols. Justus Liebigs Ann Chem 316:331–332. https://doi.org/10.1002/jlac.19013160306

    Article  CAS  Google Scholar 

  22. Comyns AE (2007) Encyclopedic dictionary of named processes in chemical technology. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Wendt H, Kreysa G (1999) Industrial processes. In: Wendt H, Kreysa G (eds) Electrochemical engineering: science technology in chemical other industries. Springer, Berlin, pp 290–369

    Chapter  Google Scholar 

  24. Henkel H, Weber W (1914) Manufacture of hydrogen peroxide. U. S. Patent, United States

  25. Walton JH, Filson GW (1932) The direct preparation of hydrogen peroxide in a high concentration. J Am Chem Soc 54:3228–3229. https://doi.org/10.1021/ja01347a026

    Article  CAS  Google Scholar 

  26. Von Schickh O (1960) Herstellung von Peroxyden durch Autoxydation. Geschichtliche Entwicklung Chem Ing Tech 32:462–462. https://doi.org/10.1002/cite.330320707

    Article  CAS  Google Scholar 

  27. Hans-Joachim R, Georg P (1939) Production of hydrogen peroxide. U. S. Patent, United States

  28. Rust FF, Porter LM (1959) Manufacture of hydrogen peroxide. U. S. Patent, United States

  29. Hou H, Zeng X, Zhang X (2020) Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed 59:17356–17376. https://doi.org/10.1002/anie.201911609

    Article  CAS  Google Scholar 

  30. Roberts HC (1949) Production of hydrogen peroxide by the partial oxidation of alcohols. U. S. Patent

  31. Rust FF (1955) N. V. de Bataafsche Petroleum Maatschappij. Chem Abstr 53:3613

    Google Scholar 

  32. Leyshon D, Jones R, Cochran R (1993) Production of hydrogen peroxide. U. S. Patent

  33. Padilla-Polo A (1997) University of Alcalá, Spain

  34. James TH, Weissberger A (1938) Oxidation processes. XI. The autoxidation of durohydroquinone. J Am Chem Soc 60:98–104

    Article  CAS  Google Scholar 

  35. Chinta S, Lunsford JH (2004) A mechanistic study of H2O2 and H2O formation from H2 and O2 catalyzed by palladium in an aqueous medium. J Catal 225:249–255. https://doi.org/10.1016/j.jcat.2004.04.014

    Article  CAS  Google Scholar 

  36. Dissanayake DP, Lunsford JH (2003) The direct formation of H2O2 from H2 and O2 over colloidal palladium. J Catal 214:113–120. https://doi.org/10.1016/S0021-9517(02)00171-9

    Article  CAS  Google Scholar 

  37. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013) Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchange–correlation functionals. Phys Chem Chem Phys 15:5539–5552. https://doi.org/10.1039/C3CP44559C

    Article  CAS  PubMed  Google Scholar 

  38. Lewis RJ, Hutchings GJ (2019) Recent advances in the direct synthesis of H2O2. ChemCatChem 11:298–308. https://doi.org/10.1002/cctc.201801435

    Article  CAS  Google Scholar 

  39. Ntainjua NE, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Moulijn JA, Hutchings GJ (2009) Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts. Chemsuschem 2:575–580. https://doi.org/10.1002/cssc.200800257

    Article  CAS  Google Scholar 

  40. Wilson NM, Flaherty DW (2016) Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid–solid interface. J Am Chem Soc 138:574–586. https://doi.org/10.1021/jacs.5b10669

    Article  CAS  PubMed  Google Scholar 

  41. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Comm, 2058–2059. https://doi.org/10.1039/B205248M

  42. Okumura M, Kitagawa Y, Yamagcuhi K, Akita T, Tsubota S, Haruta M (2003) Direct production of hydrogen peroxide from H2 and O2 over highly dispersed Au catalysts. Chem Lett 32:822–823. https://doi.org/10.1246/cl.2003.822

    Article  CAS  Google Scholar 

  43. Mul G, Zwijnenburg A, van der Linden B, Makkee M, Moulijn JA (2001) Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: an in situ FT-IR study. J Catal 201:128–137. https://doi.org/10.1006/jcat.2001.3239

    Article  CAS  Google Scholar 

  44. Choudhary VR, Gaikwad AG, Sansare SD (2001) Nonhazardous direct oxidation of hydrogen to hydrogen peroxide using a novel membrane catalyst. Angew Chem Int Ed 40:1776–1779. https://doi.org/10.1002/1521-3773(20010504)40:9%3c1776::AID-ANIE17760%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  45. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W (2019) Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal B Environ 245:87–99. https://doi.org/10.1016/j.apcatb.2018.12.049

    Article  CAS  Google Scholar 

  46. Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal 4:774–780. https://doi.org/10.1021/cs401208c

    Article  CAS  Google Scholar 

  47. Burek BO, Bahnemann DW, Bloh JZ (2019) Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal 9:25–37. https://doi.org/10.1021/acscatal.8b03638

    Article  CAS  Google Scholar 

  48. Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554. https://doi.org/10.1007/s00216-006-0439-9

    Article  CAS  PubMed  Google Scholar 

  49. Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1:156–162. https://doi.org/10.1038/s41929-017-0017-x

    Article  CAS  Google Scholar 

  50. KG M-NGC Quantofix®Peroxide 100 Documentation

  51. Gill TM, Zheng X (2020) Comparing methods for quantifying electrochemically accumulated H2O2. Chem Mater 32:6285–6294. https://doi.org/10.1021/acs.chemmater.0c02010

    Article  CAS  Google Scholar 

  52. Klassen NV, Marchington D, McGowan HCE (1994) H2O2 determination by the I3-method and by KMnO4 titration. Anal Chem 66:2921–2925. https://doi.org/10.1021/ac00090a020

    Article  CAS  Google Scholar 

  53. Abutaha N, Hezam A, Almekhlafi FA, Saeed AMN, Namratha K, Byrappa K (2020) Rational design of Ag–ZnO–Fe3O4 nanocomposite with promising antimicrobial activity under LED light illumination. Appl Surf Sci 527:146893. https://doi.org/10.1016/j.apsusc.2020.146893

    Article  CAS  Google Scholar 

  54. Gordon G, Cooper WJ, Rice RG, Pacey GE (1988) Methods of measuring disinfectant residuals. J AWWA 80:94–108. https://doi.org/10.1002/j.1551-8833.1988.tb03104.x

    Article  CAS  Google Scholar 

  55. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

    Article  CAS  PubMed  Google Scholar 

  56. Bader H, Sturzenegger V, Hoigné J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res 22:1109–1115. https://doi.org/10.1016/0043-1354(88)90005-X

    Article  CAS  Google Scholar 

  57. Chen L, Chen C, Yang Z, Li S, Chu C, Chen B (2021) Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv Funct Mater 31:2105731. https://doi.org/10.1002/adfm.202105731

    Article  CAS  Google Scholar 

  58. Xiao J, Wang M, Pang Z, Dai L, Lu J, Zou J (2019) Simultaneous spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide using potassium iodide as the indicator. Anal Methods 11:1930–1938. https://doi.org/10.1039/C8AY02772B

    Article  CAS  Google Scholar 

  59. Fuku K, Miyase Y, Miseki Y, Gunji T, Sayama K (2016) Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect 1:5721–5726. https://doi.org/10.1002/slct.201601469

    Article  CAS  Google Scholar 

  60. Wei Y, Zhang J, Zheng Q, Miao J, Alvarez PJ, Long M (2021) Quantification of photocatalytically-generated hydrogen peroxide in the presence of organic electron donors: interference and reliability considerations. Chemosphere 279:130556. https://doi.org/10.1016/j.chemosphere.2021.130556

    Article  CAS  PubMed  Google Scholar 

  61. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K (1998) Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper(II) ion and 2,9-dimethyl-1,10-phenanthroline. Environ Sci Technol 32:3821–3824. https://doi.org/10.1021/es9800784

    Article  CAS  Google Scholar 

  62. Pérez JF, Sáez C, Llanos J, Cañizares P, López C, Rodrigo MA (2017) Improving the efficiency of carbon cloth for the electrogeneration of H2O2: role of polytetrafluoroethylene and carbon black loading. Ind Eng Chem Res 56:12588–12595. https://doi.org/10.1021/acs.iecr.7b02563

    Article  CAS  Google Scholar 

  63. Kim K, Park J, Kim H, Jung GY, Kim M-G (2019) Solid-phase photocatalysts: physical vapor deposition of Au nanoislands on porous TiO2 films for millimolar H2O2 production within a few minutes. ACS Catal 9:9206–9211. https://doi.org/10.1021/acscatal.9b02269

    Article  CAS  Google Scholar 

  64. Brandhuber PK. G. V. methods for the detection of residual concentrations of hydrogen peroxide in advanced oxidation processes project REUSE-04-19. WateReuse Research Foundation, Alexandria

  65. Wang M, Qiu S, Yang H, Huang Y, Dai L, Zhang B, Zou J (2021) Spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of potassium iodide and its applications to hydroxylamine-involved Fenton and Fenton-like systems. Chemosphere 270:129448. https://doi.org/10.1016/j.chemosphere.2020.129448

    Article  CAS  PubMed  Google Scholar 

  66. Miller WL, Kester DR (1988) Hydrogen peroxide measurement in seawater by (p-hydroxyphenyl)acetic acid dimerization. Anal Chem 60:2711–2715. https://doi.org/10.1021/ac00175a014

    Article  CAS  Google Scholar 

  67. Schick R, Strasser I, Stabel H-H (1997) Fluorometric determination of low concentrations of H2O2 in water: comparison with two other methods and application to environmental samples and drinking-water treatment. Water Res 31:1371–1378. https://doi.org/10.1016/S0043-1354(96)00410-1

    Article  CAS  Google Scholar 

  68. Sandri F, Danieli M, Zecca M, Centomo P (2021) Comparing catalysts of the direct synthesis of hydrogen peroxide in organic solvent: is the measure of the product an issue? ChemCatChem 13:2653–2663. https://doi.org/10.1002/cctc.202100306

    Article  CAS  Google Scholar 

  69. Pang Y, Xie H, Sun Y, Titirici M-M, Chai G-L (2020) Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. J Mater Chem 8:24996–25016. https://doi.org/10.1039/D0TA09122G

    Article  CAS  Google Scholar 

  70. Zhao H, Yuan Z-Y (2021) Design strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide. ChemSusChem 14:1616–1633. https://doi.org/10.1002/cssc.202100055

    Article  CAS  PubMed  Google Scholar 

  71. Domínguez-Henao L, Turolla A, Monticelli D, Antonelli M (2018) Assessment of a colorimetric method for the measurement of low concentrations of peracetic acid and hydrogen peroxide in water. Talanta 183:209–215. https://doi.org/10.1016/j.talanta.2018.02.078

    Article  CAS  PubMed  Google Scholar 

  72. Schanz T, Burek B, Bloh J (2023) Fate and reactivity of peroxides formed over BiVO4 anodes in bicarbonate electrolytes. Energy Lett 8:1463–1467. https://doi.org/10.1021/acsenergylett.3c00227

    Article  CAS  Google Scholar 

  73. Burek BO, de Boer SR, Tieves F, Zhang W, van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann DW, Bloh JZ (2019) Photoenzymatic hydroxylation of ethylbenzene catalyzed by unspecific peroxygenase: origin of enzyme inactivation and the impact of light intensity and temperature. ChemCatChem 11:3093–3100. https://doi.org/10.1002/cctc.201900610

    Article  CAS  Google Scholar 

  74. Beranek R (2019) Selectivity of chemical conversions: do light-driven photoelectrocatalytic processes hold special promise? Angew Chem Int Ed 58:16724–16729. https://doi.org/10.1002/anie.201908654

    Article  CAS  Google Scholar 

  75. Nosaka Y, Takahashi S, Sakamoto H, Nosaka AY (2011) Reaction mechanism of Cu(II)-grafted visible-light responsive TiO2 and WO3 photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry. J Phys Chem C 115:21283–21290. https://doi.org/10.1021/jp2070634

    Article  CAS  Google Scholar 

  76. Kim H-i, Choi Y, Hu S, Choi W, Kim J-H (2018) Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl Catal B Environ 229:121–129. https://doi.org/10.1016/j.apcatb.2018.01.060

    Article  CAS  Google Scholar 

  77. Cervantes-González J, Vosburg DA, Mora-Rodriguez SE, Vázquez MA, Zepeda LG, Villegas Gómez C, Lagunas-Rivera S (2020) Anthraquinones: versatile organic photocatalysts. ChemCatChem 12:3811–3827. https://doi.org/10.1002/cctc.202000376

    Article  CAS  Google Scholar 

  78. Bloh JZ (2021) Intensification of heterogeneous photocatalytic reactions without efficiency losses: the importance of surface catalysis. Catal Lett 151:3105–3113. https://doi.org/10.1007/s10562-021-03573-0

    Article  CAS  Google Scholar 

  79. Narita E, Lawson F, Han KN (1983) Solubility of oxygen in aqueous electrolyte solutions. Hydrometallurgy 10:21–37. https://doi.org/10.1016/0304-386X(83)90074-9

    Article  CAS  Google Scholar 

  80. Liu Z, Sheng X, Wang D, Feng X (2019) Efficient hydrogen peroxide generation utilizing photocatalytic oxygen reduction at a triphase interface. iScience 17:67–73. https://doi.org/10.1016/j.isci.2019.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Siahrostami S, Li G-L, Viswanathan V, Nørskov JK (2017) One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J Phys Chem Lett 8:1157–1160. https://doi.org/10.1021/acs.jpclett.6b02924

    Article  CAS  PubMed  Google Scholar 

  82. Viswanathan V, Hansen HA, Nørskov JK (2015) Selective electrochemical generation of hydrogen peroxide from water oxidation. J Phys Chem Lett 6:4224–4228. https://doi.org/10.1021/acs.jpclett.5b02178

    Article  CAS  PubMed  Google Scholar 

  83. Fuku K, Sayama K (2016) Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem Comm 52:5406–5409. https://doi.org/10.1039/C6CC01605G

    Article  CAS  PubMed  Google Scholar 

  84. Kelly SR, Shi X, Back S, Vallez L, Park SY, Siahrostami S, Zheng X, Nørskov JK (2019) ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catal 9:4593–4599. https://doi.org/10.1021/acscatal.8b04873

    Article  CAS  Google Scholar 

  85. Park SY, Abroshan H, Shi X, Jung HS, Siahrostami S, Zheng X (2019) CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Lett 4:352–357. https://doi.org/10.1021/acsenergylett.8b02303

    Article  CAS  Google Scholar 

  86. Shi X, Siahrostami S, Li G-L, Zhang Y, Chakthranont P, Studt F, Jaramillo TF, Zheng X, Nørskov JK (2017) Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat Commun 8:701. https://doi.org/10.1038/s41467-017-00585-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K (2018) Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustain Energy Fuels 2:1621–1629. https://doi.org/10.1039/C8SE00070K

    Article  CAS  Google Scholar 

  88. Baek JH, Gill TM, Abroshan H, Park S, Shi X, Nørskov J, Jung HS, Siahrostami S, Zheng X (2019) Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett 4:720–728. https://doi.org/10.1021/acsenergylett.9b00277

    Article  CAS  Google Scholar 

  89. Kuttassery F, Mathew S, Sagawa S, Remello SN, Thomas A, Yamamoto D, Onuki S, Nabetani Y, Tachibana H, Inoue H (2017) One electron-initiated two-electron oxidation of water by aluminum porphyrins with earth’s most abundant metal. Chemsuschem 10:1909–1915. https://doi.org/10.1002/cssc.201700322

    Article  CAS  PubMed  Google Scholar 

  90. Xia C, Back S, Ringe S, Jiang K, Chen F, Sun X, Siahrostami S, Chan K, Wang H (2020) Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat Catal 3:125–134. https://doi.org/10.1038/s41929-019-0402-8

    Article  CAS  Google Scholar 

  91. Mavrikis S, Göltz M, Rosiwal S, Wang L, Ponce de León C (2020) Boron-doped diamond electrocatalyst for enhanced anodic H2O2 production. ACS Appl Energy Mater 3:3169–3173. https://doi.org/10.1021/acsaem.0c00093

    Article  CAS  Google Scholar 

  92. Miyase Y, Miseki Y, Gunji T, Sayama K (2020) Efficient H2O2 production via H2O oxidation on an anode modified with Sb-containing mixed metal oxides. ChemElectroChem 7:2448–2455. https://doi.org/10.1002/celc.202000276

    Article  CAS  Google Scholar 

  93. Baek J, Jin Q, Johnson NS, Jiang Y, Ning R, Mehta A, Siahrostami S, Zheng X (2022) Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide. Nat Commun 13:7256. https://doi.org/10.1038/s41467-022-34884-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fan L, Bai X, Xia C, Zhang X, Zhao X, Xia Y, Wu Z-Y, Lu Y, Liu Y, Wang H (2022) CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nat Commun 13:2668. https://doi.org/10.1038/s41467-022-30251-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gill TM, Vallez L, Zheng X (2021) Enhancing electrochemical water oxidation toward H2O2 via carbonaceous electrolyte engineering. ACS Appl Energy Mater 4:12429–12435. https://doi.org/10.1021/acsaem.1c02258

    Article  CAS  Google Scholar 

  96. Gill TM, Vallez L, Zheng X (2021) The role of bicarbonate-based electrolytes in H2O2 production through two-electron water oxidation. ACS Energy Lett 6:2854–2862. https://doi.org/10.1021/acsenergylett.1c01264

    Article  CAS  Google Scholar 

  97. Richardson DE, Yao H, Frank KM, Bennett DA (2000) Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: oxidation of sulfides by peroxymonocarbonate. J Am Chem Soc 122:1729–1739. https://doi.org/10.1021/ja9927467

    Article  CAS  Google Scholar 

  98. Kormann C, Bahnemann DW, Hoffmann MR (1988) Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ Sci Technol 22:798–806. https://doi.org/10.1021/es00172a009

    Article  CAS  PubMed  Google Scholar 

  99. Riente P, Fianchini M, Llanes P, Pericàs MA, Noël T (2021) Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nat Commun 12:625. https://doi.org/10.1038/s41467-020-20882-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schuchmann H-P, Sonntag CV (1984) Methylperoxyl radicals: a study of the γ-radiolysis of methane in oxygenated aqueous solutions. Z Nat 39:217–221. https://doi.org/10.1515/znb-1984-0217

    Article  Google Scholar 

  101. Dilla M, Mateblowski A, Ristig S, Strunk J (2017) Photocatalytic CO2 reduction under continuous flow high-purity conditions: influence of light intensity and H2O concentration. ChemCatChem 9:4345–4352. https://doi.org/10.1002/cctc.201701189

    Article  CAS  Google Scholar 

  102. Takeuchi S, Takashima M, Takase M, Ohtani B (2018) Digitally controlled kinetics of titania-photocatalyzed oxygen evolution. Chem Lett 47:373–376. https://doi.org/10.1246/cl.171093

    Article  CAS  Google Scholar 

  103. Bloh JZ (2019) A holistic approach to model the kinetics of photocatalytic reactions. Front Chem. https://doi.org/10.3389/fchem.2019.00128

    Article  PubMed  PubMed Central  Google Scholar 

  104. Burek BO, Sutor A, Bahnemann DW, Bloh JZ (2017) Completely integrated wirelessly-powered photocatalyst-coated spheres as a novel means to perform heterogeneous photocatalytic reactions. Catal Sci Technol 7:4977–4983. https://doi.org/10.1039/C7CY01537B

    Article  CAS  Google Scholar 

  105. Moon G-h, Kim W, Bokare AD, Sung N-e, Choi W (2014) Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ Sci 7:4023–4028. https://doi.org/10.1039/C4EE02757D

    Article  CAS  Google Scholar 

  106. Moon G-h, Fujitsuka M, Kim S, Majima T, Wang X, Choi W (2017) Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal 7:2886–2895. https://doi.org/10.1021/acscatal.6b03334

    Article  CAS  Google Scholar 

  107. Teranishi M, Naya S-i, Tada H (2016) Temperature- and pH-dependence of hydrogen peroxide formation from molecular oxygen by gold nanoparticle-loaded titanium(IV) oxide photocatalyst. J Phys Chem C 120:1083–1088. https://doi.org/10.1021/acs.jpcc.5b10626

    Article  CAS  Google Scholar 

  108. Goto H, Hanada Y, Ohno T, Matsumura M (2004) Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J Catal 225:223–229. https://doi.org/10.1016/j.jcat.2004.04.001

    Article  CAS  Google Scholar 

  109. Hykaway N, Sears WM, Morisaki H, Morrison SR (1986) Current-doubling reactions on titanium dioxide photoanodes. J Phys Chem 90:6663–6667. https://doi.org/10.1021/j100283a014

    Article  CAS  Google Scholar 

  110. Burek BO, Timm J, Bahnemann DW, Bloh JZ (2019) Kinetic effects and oxidation pathways of sacrificial electron donors on the example of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over illuminated titanium dioxide. Catal Today 335:354–364. https://doi.org/10.1016/j.cattod.2018.12.044

    Article  CAS  Google Scholar 

  111. Shiraishi Y, Kanazawa S, Tsukamoto D, Shiro A, Sugano Y, Hirai T (2013) Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal 3:2222–2227. https://doi.org/10.1021/cs400511q

    Article  CAS  Google Scholar 

  112. Baran T, Wojtyła S, Minguzzi A, Rondinini S, Vertova A (2019) Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl Catal B Environ 244:303–312. https://doi.org/10.1016/j.apcatb.2018.11.044

    Article  CAS  Google Scholar 

  113. Xiong X, Zhang X, Liu S, Zhao J, Xu Y (2018) Sustained production of H2O2 in alkaline water solution using borate and phosphate-modified Au/TiO2 photocatalysts. Photochem Photobiol Sci 17:1018–1022. https://doi.org/10.1039/C8PP00177D

    Article  CAS  PubMed  Google Scholar 

  114. Xu J, Dai G, Chen B, He D, Situ Y, Huang H (2020) Construction of Ti3+–TiO2–C3N4por compound coupling photocatalysis and Fenton-like process: self-driven Fenton-like process without extra H2O2 addition. Chemosphere 241:125022. https://doi.org/10.1016/j.chemosphere.2019.125022

    Article  CAS  PubMed  Google Scholar 

  115. Zhang J, Zheng L, Wang F, Chen C, Wu H, Leghari SAK, Long M (2020) The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Appl Catal B Environ 269:118770. https://doi.org/10.1016/j.apcatb.2020.118770

    Article  CAS  Google Scholar 

  116. Zhang Y, Simon KA, Andrew AA, Del Vecchio R, Blough NV (2014) Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors. Environ Sci Technol 48:12679–12688. https://doi.org/10.1021/es5035798

    Article  CAS  PubMed  Google Scholar 

  117. Zheng L, Su H, Zhang J, Walekar LS, Vafaei Molamahmood H, Zhou B, Long M, Hu YH (2018) Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl Catal B Environ 239:475–484. https://doi.org/10.1016/j.apcatb.2018.08.031

    Article  CAS  Google Scholar 

  118. Maurino V, Minero C, Pelizzetti E, Mariella G, Arbezzano A, Rubertelli F (2007) Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2. Res Chem Intermed 33:319–332. https://doi.org/10.1163/156856707779238711

    Article  CAS  Google Scholar 

  119. Maurino V, Minero C, Mariella G, Pelizzetti E (2005) Sustained production of H2O2 on irradiated TiO2–fluoride systems. Chem Comm, 2627–2629. https://doi.org/10.1039/B418789J

  120. Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal 2:599–603. https://doi.org/10.1021/cs2006873

    Article  CAS  Google Scholar 

  121. Wang L, Cao S, Guo K, Wu Z, Ma Z, Piao L (2019) Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin J Catal 40:470–475. https://doi.org/10.1016/S1872-2067(19)63274-2

    Article  CAS  Google Scholar 

  122. Teranishi M, Naya S-i, Tada H (2010) In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J Am Chem Soc 132:7850–7851. https://doi.org/10.1021/ja102651g

    Article  CAS  PubMed  Google Scholar 

  123. Zeng X, Wang Z, Meng N, McCarthy DT, Deletic A, Pan J-h, Zhang X (2017) Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection. Appl Catal B Environ 202:33–41. https://doi.org/10.1016/j.apcatb.2016.09.014

    Article  CAS  Google Scholar 

  124. Ma R, Wang L, Wang H, Liu Z, Xing M, Zhu L, Meng X, Xiao F-S (2019) Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot. Appl Catal B 244:594–603. https://doi.org/10.1016/j.apcatb.2018.11.087

    Article  CAS  Google Scholar 

  125. Zuo G, Li B, Guo Z, Wang L, Yang F, Hou W, Zhang S, Zong P, Liu S, Meng X, Du Y, Wang T, Roy VAL (2019) Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 9:623

    Article  CAS  Google Scholar 

  126. Zheng L, Zhang J, Hu YH, Long M (2019) Enhanced photocatalytic production of H2O2 by nafion coatings on S, N-codoped graphene-quantum-dots-modified TiO2. J Phys Chem C 123:13693–13701. https://doi.org/10.1021/acs.jpcc.9b02311

    Article  CAS  Google Scholar 

  127. Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Comm 50:10768–10777. https://doi.org/10.1039/C4CC02553A

    Article  CAS  PubMed  Google Scholar 

  128. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  129. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606. https://doi.org/10.1021/cs300240x

    Article  CAS  Google Scholar 

  130. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  131. Che W, Cheng W, Yao T, Tang F, Liu W, Su H, Huang Y, Liu Q, Liu J, Hu F, Pan Z, Sun Z, Wei S (2017) Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. J Am Chem Soc 139:3021–3026. https://doi.org/10.1021/jacs.6b11878

    Article  CAS  PubMed  Google Scholar 

  132. Deng Q-F, Liu L, Lin X-Z, Du G, Liu Y, Yuan Z-Y (2012) Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chem Eng J 203:63–70. https://doi.org/10.1016/j.cej.2012.06.124

    Article  CAS  Google Scholar 

  133. Hu S, Chen X, Li Q, Li F, Fan Z, Wang H, Wang Y, Zheng B, Wu G (2017) Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis. Appl Catal B Environ 201:58–69. https://doi.org/10.1016/j.apcatb.2016.08.002

    Article  CAS  Google Scholar 

  134. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B Environ 190:26–35. https://doi.org/10.1016/j.apcatb.2016.03.004

    Article  CAS  Google Scholar 

  135. Lima MJ, Silva AMT, Silva CG, Faria JL (2017) Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol. J Catal 353:44–53. https://doi.org/10.1016/j.jcat.2017.06.030

    Article  CAS  Google Scholar 

  136. Lu D, Wang H, Zhao X, Kondamareddy KK, Ding J, Li C, Fang P (2017) Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain Chem Eng 5:1436–1445. https://doi.org/10.1021/acssuschemeng.6b02010

    Article  CAS  Google Scholar 

  137. Moreira NFF, Sampaio MJ, Ribeiro AR, Silva CG, Faria JL, Silva AMT (2019) Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl Catal B Environ 248:184–192. https://doi.org/10.1016/j.apcatb.2019.02.001

    Article  CAS  Google Scholar 

  138. Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM (2019) Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review. Carbon 149:693–721. https://doi.org/10.1016/j.carbon.2019.04.104

    Article  CAS  Google Scholar 

  139. Huang D, Li Z, Zeng G, Zhou C, Xue W, Gong X, Yan X, Chen S, Wang W, Cheng M (2019) Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl Catal B Environ 240:153–173. https://doi.org/10.1016/j.apcatb.2018.08.071

    Article  CAS  Google Scholar 

  140. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  141. Yang W, Zhang X, Xie Y (2016) Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 11:793–816. https://doi.org/10.1016/j.nantod.2016.10.004

    Article  CAS  Google Scholar 

  142. Gillan EG (2000) Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem Mater 12:3906–3912. https://doi.org/10.1021/cm000570y

    Article  CAS  Google Scholar 

  143. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89. https://doi.org/10.1002/anie.201101182

    Article  CAS  Google Scholar 

  144. Du R, Xiao K, Li B, Han X, Zhang C, Wang X, Zuo Y, Guardia P, Li J, Chen J, Arbiol J, Cabot A (2022) Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chem Eng J 441:135999. https://doi.org/10.1016/j.cej.2022.135999

    Article  CAS  Google Scholar 

  145. Torres-Pinto A, Sampaio MJ, Silva CG, Faria JL, Silva AMT (2019) Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl Catal B Environ 252:128–137. https://doi.org/10.1016/j.apcatb.2019.03.040

    Article  CAS  Google Scholar 

  146. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ 176–177:44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  147. Wang Y, Hong J, Zhang W, Xu R (2013) Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal Sci Technol 3:1703–1711. https://doi.org/10.1039/C3CY20836B

    Article  CAS  Google Scholar 

  148. Chen Z, Zhang S, Liu Y, Alharbi NS, Rabah SO, Wang S, Wang X (2020) Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci Total Environ 731:139054. https://doi.org/10.1016/j.scitotenv.2020.139054

    Article  CAS  PubMed  Google Scholar 

  149. Wang J, Wang S (2022) A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coord Chem Rev 453:214338. https://doi.org/10.1016/j.ccr.2021.214338

    Article  CAS  Google Scholar 

  150. Zhang Y, Liu J, Wu G, Chen W (2012) Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4:5300–5303. https://doi.org/10.1039/C2NR30948C

    Article  CAS  PubMed  Google Scholar 

  151. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W-K (2013) In Situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5:11392–11401. https://doi.org/10.1021/am403653a

    Article  CAS  PubMed  Google Scholar 

  152. Xiao H, Wang W, Liu G, Chen Z, Lv K, Zhu J (2015) Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: Effect of preparation conditions. Appl Surf Sci 358:313–318. https://doi.org/10.1016/j.apsusc.2015.07.213

    Article  CAS  Google Scholar 

  153. Chen D, Wang K, Hong W, Zong R, Yao W, Zhu Y (2015) Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl Catal B Environ 166–167:366–373. https://doi.org/10.1016/j.apcatb.2014.11.050

    Article  CAS  Google Scholar 

  154. Dong F, Li Y, Wang Z, Ho W-K (2015) Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl Surf Sci 358:393–403. https://doi.org/10.1016/j.apsusc.2015.04.034

    Article  CAS  Google Scholar 

  155. Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J (2017) Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-iron terephthalate metal-organic framework for MB degradation. Appl Catal B Environ 202:653–663. https://doi.org/10.1016/j.apcatb.2016.09.073

    Article  CAS  Google Scholar 

  156. Xie L, Ai Z, Zhang M, Sun R, Zhao W (2016) Enhanced hydrogen evolution in the presence of plasmonic Au-photo-sensitized g-C3N4 with an extended absorption spectrum from 460 to 640 nm. PLoS One 11:e0161397. https://doi.org/10.1371/journal.pone.0161397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hu S, Qu X, Li P, Wang F, Li Q, Song L, Zhao Y, Kang X (2018) Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites. Chem Eng J 334:410–418. https://doi.org/10.1016/j.cej.2017.10.016

    Article  CAS  Google Scholar 

  158. Shen L, Xing Z, Zou J, Li Z, Wu X, Zhang Y, Zhu Q, Yang S, Zhou W (2017) Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci Rep 7:41978. https://doi.org/10.1038/srep41978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang Z, Huang Y, Chen M, Shi X, Zhang Y, Cao J, Ho W, Lee SC (2019) Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl Mater Interfaces 11:10651–10662. https://doi.org/10.1021/acsami.8b21987

    Article  CAS  PubMed  Google Scholar 

  160. Liang Y, Wu X, Liu X, Li C, Liu S (2022) Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl Catal B Environ 304:120978. https://doi.org/10.1016/j.apcatb.2021.120978

    Article  CAS  Google Scholar 

  161. Fu J, Yu J, Jiang C, Cheng B (2018) g-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8:1701503. https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  162. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  163. Patnaik S, Sahoo DP, Parida K (2021) Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 172:682–711. https://doi.org/10.1016/j.carbon.2020.10.073

    Article  CAS  Google Scholar 

  164. Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem 3:23642–23652. https://doi.org/10.1039/C5TA07374J

    Article  CAS  Google Scholar 

  165. Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed 53:13454–13459. https://doi.org/10.1002/anie.201407938

    Article  CAS  Google Scholar 

  166. Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289. https://doi.org/10.1042/bj2530287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491. https://doi.org/10.1039/B914110C

    Article  CAS  PubMed  Google Scholar 

  168. Torres-Pinto A, Sampaio MJ, Teixo J, Silva CG, Faria JL, Silva AMT (2020) Photo-Fenton degradation assisted by in situ generation of hydrogen peroxide using a carbon nitride photocatalyst. J Water Process Eng 37:101467. https://doi.org/10.1016/j.jwpe.2020.101467

    Article  Google Scholar 

  169. Zhang M, Wang Q, Chen C, Zang L, Ma W, Zhao J (2009) Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angew Chem Int Ed 48:6081–6084. https://doi.org/10.1002/anie.200900322

    Article  CAS  Google Scholar 

  170. Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2015) Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 5:3058–3066. https://doi.org/10.1021/acscatal.5b00408

    Article  CAS  Google Scholar 

  171. Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y, Antonietti M, Titirici M-M (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. Chemsuschem 3:840–845. https://doi.org/10.1002/cssc.201000044

    Article  CAS  PubMed  Google Scholar 

  172. Liu B, Du J, Ke G, Jia B, Huang Y, He H, Zhou Y, Zou Z (2022) Boosting O2 reduction and H2O dehydrogenation kinetics: surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Adv Funct Mater 32:2111125. https://doi.org/10.1002/adfm.202111125

    Article  CAS  Google Scholar 

  173. Liu W, Song C, Kou M, Wang Y, Deng Y, Shimada T, Ye L (2021) Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction. Chem Eng J 425:130615. https://doi.org/10.1016/j.cej.2021.130615

    Article  CAS  Google Scholar 

  174. Zhang Z, Zheng Y, Xie H, Zhao J, Guo X, Zhang W, Fu Q, Wang S, Xu Q, Huang Y (2022) Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production. J Alloys Compd 904:164028. https://doi.org/10.1016/j.jallcom.2022.164028

    Article  CAS  Google Scholar 

  175. Wang R, Zhang X, Li F, Cao D, Pu M, Han D, Yang J, Xiang X (2018) Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts. J Energy Chem 27:343–350. https://doi.org/10.1016/j.jechem.2017.12.014

    Article  Google Scholar 

  176. Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y (2018) Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci 11:2581–2589. https://doi.org/10.1039/C8EE01316K

    Article  CAS  Google Scholar 

  177. Bai J, Sun Y, Li M, Yang L, Li J (2018) The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment. Diam Relat Mater 87:1–9. https://doi.org/10.1016/j.diamond.2018.05.004

    Article  CAS  Google Scholar 

  178. Deng L, Sun J, Sun J, Wang X, Shen T, Zhao R, Zhang Y, Wang B (2022) Improved performance of photosynthetic H2O2 and photodegradation by K-, P-, O-, and S-co-doped g-C3N4 with enhanced charge transfer ability under visible light. Appl Surf Sci 597:153586. https://doi.org/10.1016/j.apsusc.2022.153586

    Article  CAS  Google Scholar 

  179. Chu Y-C, Lin T-J, Lin Y-R, Chiu W-L, Nguyen B-S, Hu C (2020) Influence of P, S, O-doping on g-C3N4 for hydrogel formation and photocatalysis: an experimental and theoretical study. Carbon 169:338–348. https://doi.org/10.1016/j.carbon.2020.07.053

    Article  CAS  Google Scholar 

  180. Feng C, Tang L, Deng Y, Wang J, Liu Y, Ouyang X, Yang H, Yu J, Wang J (2021) A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl Catal B Environ 281:119539. https://doi.org/10.1016/j.apcatb.2020.119539

    Article  CAS  Google Scholar 

  181. Liu Y, Zheng Y, Zhang W, Peng Z, Xie H, Wang Y, Guo X, Zhang M, Li R, Huang Y (2021) Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J Mater Sci Technol 95:127–135. https://doi.org/10.1016/j.jmst.2021.03.025

    Article  CAS  Google Scholar 

  182. Ding Y, Maitra S, Wang C, Zheng R, Zhang M, Barakat T, Roy S, Liu J, Li Y, Hasan T, Su B-L (2022) Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. J Energy Chem 70:236–247. https://doi.org/10.1016/j.jechem.2022.02.031

    Article  CAS  Google Scholar 

  183. Wang W, Zhang W, Cai Y, Wang Q, Deng J, Chen J, Jiang Z, Zhang Y, Yu C (2022) Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets. Nano Res. https://doi.org/10.1007/s12274-022-4976-0

    Article  PubMed  PubMed Central  Google Scholar 

  184. Qu X, Hu S, Bai J, Li P, Lu G, Kang X (2018) Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J Mater Sci Technol 34:1932–1938. https://doi.org/10.1016/j.jmst.2018.04.019

    Article  CAS  Google Scholar 

  185. Gupta SK, Mao Y (2021) A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog Mater Sci 117:100734. https://doi.org/10.1016/j.pmatsci.2020.100734

    Article  CAS  Google Scholar 

  186. Yang L, Dong G, Jacobs DL, Wang Y, Zang L, Wang C (2017) Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J Catal 352:274–281. https://doi.org/10.1016/j.jcat.2017.05.010

    Article  CAS  Google Scholar 

  187. Zhao Y, Zhang P, Yang Z, Li L, Gao J, Chen S, Xie T, Diao C, Xi S, Xiao B, Hu C, Choi W (2021) Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat Commun 12:3701. https://doi.org/10.1038/s41467-021-24048-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pan Y, Liu X, Zhang W, Shao B, Liu Z, Liang Q, Wu T, He Q, Huang J, Peng Z, Liu Y, Zhao C (2022) Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chem Eng J 427:132032. https://doi.org/10.1016/j.cej.2021.132032

    Article  CAS  Google Scholar 

  189. Teng Z, Cai W, Sim W, Zhang Q, Wang C, Su C, Ohno T (2021) Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: pragmatic guidelines for predicting charge separation. Appl Catal B Environ 282:119589. https://doi.org/10.1016/j.apcatb.2020.119589

    Article  CAS  Google Scholar 

  190. Chang X, Yang J, Han D, Zhang B, Xiang X, He J (2018) Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts. Catalysts 8:147

    Article  Google Scholar 

  191. Ahmed MT, Abdullah H, Kuo D-H (2022) Highly efficient photocatalytic H2O2 generation over dysprosium oxide-integrated g-C3N4 nanosheets with nitrogen deficiency. Chemosphere 307:135910. https://doi.org/10.1016/j.chemosphere.2022.135910

    Article  CAS  PubMed  Google Scholar 

  192. Chu C, Miao W, Li Q, Wang D, Liu Y, Mao S (2022) Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chem Eng J 428:132531. https://doi.org/10.1016/j.cej.2021.132531

    Article  CAS  Google Scholar 

  193. Yang Y, Zeng G, Huang D, Zhang C, He D, Zhou C, Wang W, Xiong W, Li X, Li B, Dong W, Zhou Y (2020) Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl Catal B Environ 272:118970. https://doi.org/10.1016/j.apcatb.2020.118970

    Article  CAS  Google Scholar 

  194. Zhang M, Jiang Y, Xu X, Yu X, Shen W, Luo M, Ding L, Chen H (2022) Facile synthesis of porous 1,3,5-trihydroxybenzene substituted g-C3N4 for boosted photocatalytic rhodamine B degradation and H2O2 production. J Alloys Compd 925:166604. https://doi.org/10.1016/j.jallcom.2022.166604

    Article  CAS  Google Scholar 

  195. Zhang P, Zhang J, Wang D, Zhang F, Zhao Y, Yan M, Zheng C, Wang Q, Long M, Chen C (2022) Modification of g-C3N4 with hydroxyethyl cellulose as solid proton donor via hydrogen bond to enhance H2O2 production. Appl Catal B Environ 318:121749. https://doi.org/10.1016/j.apcatb.2022.121749

    Article  CAS  Google Scholar 

  196. Torres-Pinto A, Boumeriame H, Silva CG, Faria JL, Silva AMT (2023) Boosting carbon nitride photoactivity by metal-free functionalization for selective H2O2 synthesis under visible light. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.2c04512

    Article  Google Scholar 

  197. Wang A, Liang H, Chen F, Tian X, Yin S, Jing S, Tsiakaras P (2022) Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl Catal B Environ 310:121336. https://doi.org/10.1016/j.apcatb.2022.121336

    Article  CAS  Google Scholar 

  198. Farzin F, Rofouei MK, Mousavi M, Ghasemi JB (2022) A novel Z-scheme oxygen-doped g-C3N4 nanosheet/NaBiS2 nanoribbon for efficient photocatalytic H2O2 production and organic pollutants degradation. J Phys Chem Solids 163:110588. https://doi.org/10.1016/j.jpcs.2022.110588

    Article  CAS  Google Scholar 

  199. Zhao X, You Y, Huang S, Wu Y, Ma Y, Zhang G, Zhang Z (2020) Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br 2/g-C3N4 heterostructure under visible light. Appl Catal B Environ 278:119251. https://doi.org/10.1016/j.apcatb.2020.119251

    Article  CAS  Google Scholar 

  200. Yang Y, Zeng Z, Zeng G, Huang D, Xiao R, Zhang C, Zhou C, Xiong W, Wang W, Cheng M, Xue W, Guo H, Tang X, He D (2019) Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B Environ 258:117956. https://doi.org/10.1016/j.apcatb.2019.117956

    Article  CAS  Google Scholar 

  201. Yang Q, Li R, Wei S, Yang R (2022) Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: efficient photocatalytic H2O2 production via two-channel pathway. Appl Surf Sci 572:151525. https://doi.org/10.1016/j.apsusc.2021.151525

    Article  CAS  Google Scholar 

  202. Zhang H, Bai X (2022) Protonated g-C3N4 coated Co9S8 heterojunction for photocatalytic H2O2 production. J Colloid Interface Sci 627:541–553. https://doi.org/10.1016/j.jcis.2022.07.077

    Article  CAS  PubMed  Google Scholar 

  203. Zhong J, Huang J, Liu Y, Li D, Tan C, Chen P, Liu H, Zheng X, Wen C, Lv W, Liu G (2022) Construction of double-functionalized g-C3N4 heterojunction structure via optimized charge transfer for the synergistically enhanced photocatalytic degradation of sulfonamides and H2O2 production. J Hazard Mater 422:126868. https://doi.org/10.1016/j.jhazmat.2021.126868

    Article  CAS  PubMed  Google Scholar 

  204. Geng X, Wang L, Zhang L, Wang H, Peng Y, Bian Z (2021) H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chem Eng J 420:129722. https://doi.org/10.1016/j.cej.2021.129722

    Article  CAS  Google Scholar 

  205. Hou W-C, Wang Y-S (2017) Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight. ACS Sustain Chem Eng 5:2994–3001. https://doi.org/10.1021/acssuschemeng.6b02635

    Article  CAS  Google Scholar 

  206. Liang C, Guo H, Zhang L, Ruan M, Niu C-G, Feng H-P, Wen X-J, Tang N, Liu H-Y, Zeng G-M (2019) Boosting molecular oxygen activation ability in self-assembled plasmonic p–n semiconductor photocatalytic heterojunction of WO3/Ag@Ag2O. Chem Eng J 372:12–25. https://doi.org/10.1016/j.cej.2019.04.137

    Article  CAS  Google Scholar 

  207. Song H, Wei L, Chen C, Wen C, Han F (2019) Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. J Catal 376:198–208. https://doi.org/10.1016/j.jcat.2019.06.015

    Article  CAS  Google Scholar 

  208. Zhang W, Chen X, Zhao X, Yin M, Feng L, Wang H (2020) Simultaneous nitrogen doping and Cu2O oxidization by one-step plasma treatment toward nitrogen-doped Cu2O@CuO heterostructure: an efficient photocatalyst for H2O2 evolution under visible light. Appl Surf Sci 527:146908. https://doi.org/10.1016/j.apsusc.2020.146908

    Article  CAS  Google Scholar 

  209. Liu L, Gao M-Y, Yang H, Wang X, Li X, Cooper AI (2021) Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability. J Am Chem Soc 143:19287–19293. https://doi.org/10.1021/jacs.1c09979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang H, Yang C, Chen F, Zheng G, Han Q (2022) A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew Chem Int Ed 61:e202202328. https://doi.org/10.1002/anie.202202328

    Article  CAS  Google Scholar 

  211. Yu X, Viengkeo B, He Q, Zhao X, Huang Q, Li P, Huang W, Li Y (2021) Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production. Adv Sustain Syst 5:2100184. https://doi.org/10.1002/adsu.202100184

    Article  CAS  Google Scholar 

  212. Shiraishi Y, Hagi T, Matsumoto M, Tanaka S, Ichikawa S, Hirai T (2020) Solar-to-hydrogen peroxide energy conversion on resorcinol–formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation. Commun Chem 3:169. https://doi.org/10.1038/s42004-020-00421-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shiraishi Y, Matsumoto M, Ichikawa S, Tanaka S, Hirai T (2021) Polythiophene-doped resorcinol-formaldehyde resin photocatalysts for solar-to-hydrogen peroxide energy conversion. J Am Chem Soc 143:12590–12599. https://doi.org/10.1021/jacs.1c04622

    Article  CAS  PubMed  Google Scholar 

  214. Gryszel M, Rybakiewicz R, Głowacki ED (2019) Water-soluble organic dyes as molecular photocatalysts for H2O2 evolution. Adv Sustain Syst 3:1900027. https://doi.org/10.1002/adsu.201900027

    Article  CAS  Google Scholar 

  215. Jakešová M, Apaydin DH, Sytnyk M, Oppelt K, Heiss W, Sariciftci NS, Głowacki ED (2016) Hydrogen-bonded organic semiconductors as stable photoelectrocatalysts for efficient hydrogen peroxide photosynthesis. Adv Funct Mater 26:5248–5254. https://doi.org/10.1002/adfm.201601946

    Article  CAS  Google Scholar 

  216. Yin M, Chen X, Wan Y, Zhang W, Feng L, Zhang L, Wang H (2020) Doping carbon nitride quantum dots into melamine-silver matrix: an efficient photocatalyst with tunable morphology and photocatalysis for H2O2 evolution under visible light. ChemCatChem 12:1512–1518. https://doi.org/10.1002/cctc.201902045

    Article  CAS  Google Scholar 

  217. Fuku K, Takioka R, Iwamura K, Todoroki M, Sayama K, Ikenaga N (2020) Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl Catal B Environ 272:119003. https://doi.org/10.1016/j.apcatb.2020.119003

    Article  CAS  Google Scholar 

  218. Wang Z, Wang Y, Huang L, Liu X, Han Y, Wang L (2020) La2Zr2O7/rGO synthesized by one-step sol-gel method for photocatalytic degradation of tetracycline under visible-light. Chem Eng J 384:123380

    Article  CAS  Google Scholar 

  219. Kofuji Y, Ohkita S, Shiraishi Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2016) Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal 6:7021–7029. https://doi.org/10.1021/acscatal.6b02367

    Article  CAS  Google Scholar 

  220. Lu Y, Huang Y, Zhang Y, Huang T, Li H, Cao J-j, Ho W (2019) Effects of H2O2 generation over visible light-responsive Bi/Bi2O2−xCO3 nanosheets on their photocatalytic NOx removal performance. Chem Eng J 363:374–382. https://doi.org/10.1016/j.cej.2019.01.172

    Article  CAS  Google Scholar 

  221. Xiong J, Li X, Huang J, Gao X, Chen Z, Liu J, Li H, Kang B, Yao W, Zhu Y (2020) CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B Environ 266:118602. https://doi.org/10.1016/j.apcatb.2020.118602

    Article  CAS  Google Scholar 

  222. Chang A-L, Nguyen V-H, Lin K-YA, Hu C (2020) Selective synthesis of ZIFs from zinc and nickel nitrate solution for photocatalytic H2O2 production. Arab J Chem 13:8301–8308. https://doi.org/10.1016/j.arabjc.2020.04.027

    Article  CAS  Google Scholar 

  223. Liu Y, Zhao Y, Wu Q, Wang X, Nie H, Zhou Y, Huang H, Shao M, Liu Y, Kang Z (2021) Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chem Eng J 409:128184. https://doi.org/10.1016/j.cej.2020.128184

    Article  CAS  Google Scholar 

  224. Gryszel M, Markov A, Vagin M, Głowacki ED (2018) Organic heterojunction photocathodes for optimized photoelectrochemical hydrogen peroxide production. J Mater Chem 6:24709–24716. https://doi.org/10.1039/C8TA08151D

    Article  CAS  Google Scholar 

  225. Gryszel M, Sytnyk M, Jakešová M, Romanazzi G, Gabrielsson R, Heiss W, Głowacki ED (2018) General observation of photocatalytic oxygen reduction to hydrogen peroxide by organic semiconductor thin films and colloidal crystals. ACS Appl Mater Interfaces 10:13253–13257. https://doi.org/10.1021/acsami.8b01295

    Article  CAS  PubMed  Google Scholar 

  226. Węcławski MK, Jakešová M, Charyton M, Demitri N, Koszarna B, Oppelt K, Sariciftci S, Gryko DT, Głowacki ED (2017) Biscoumarin-containing acenes as stable organic semiconductors for photocatalytic oxygen reduction to hydrogen peroxide. J Mater Chem 5:20780–20788. https://doi.org/10.1039/C7TA05882A

    Article  Google Scholar 

  227. Wadnerkar N, Gueskine V, Głowacki ED, Zozoulenko I (2020) Density functional theory mechanistic study on H2O2 production using an organic semiconductor epindolidione. J Phys Chem A 124:9605–9610. https://doi.org/10.1021/acs.jpca.0c08496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Oka K, Winther-Jensen B, Nishide H (2021) Organic π-conjugated polymers as photocathode materials for visible-light-enhanced hydrogen and hydrogen peroxide production from water. Adv Energy Mater 11:2003724. https://doi.org/10.1002/aenm.202003724

    Article  CAS  Google Scholar 

  229. Khomenko VG, Barsukov VZ, Katashinskii AS (2005) The catalytic activity of conducting polymers toward oxygen reduction. Electrochim Acta 50:1675–1683. https://doi.org/10.1016/j.electacta.2004.10.024

    Article  CAS  Google Scholar 

  230. Mitraka E, Gryszel M, Vagin M, Jafari MJ, Singh A, Warczak M, Mitrakas M, Berggren M, Ederth T, Zozoulenko I, Crispin X, Głowacki ED (2019) Electrocatalytic production of hydrogen peroxide with poly(3,4-ethylenedioxythiophene) electrodes. Adv Sustain Syst 3:1800110. https://doi.org/10.1002/adsu.201800110

    Article  CAS  Google Scholar 

  231. Rabl H, Wielend D, Tekoglu S, Seelajaroen H, Neugebauer H, Heitzmann N, Apaydin DH, Scharber MC, Sariciftci NS (2020) Are polyaniline and polypyrrole electrocatalysts for oxygen (O2) reduction to hydrogen peroxide (H2O2)? ACS Appl Energy Mater 3:10611–10618. https://doi.org/10.1021/acsaem.0c01663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wang Y, Vogel A, Sachs M, Sprick RS, Wilbraham L, Moniz SJA, Godin R, Zwijnenburg MA, Durrant JR, Cooper AI, Tang J (2019) Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat Energy 4:746–760. https://doi.org/10.1038/s41560-019-0456-5

    Article  CAS  Google Scholar 

  233. Xu X, Zhong H, Huang W, Sui Y, Sa R, Chen W, Zhou G, Li X, Li D, Wen M, Jiang B (2023) The construction of conjugated organic polymers containing phenanthrenequinone redox centers for visible-light-driven H2O2 production from H2O and O2 without any additives. Chem Eng J 454:139929. https://doi.org/10.1016/j.cej.2022.139929

    Article  CAS  Google Scholar 

  234. Zhao W, Yan P, Li B, Bahri M, Liu L, Zhou X, Clowes R, Browning ND, Wu Y, Ward JW, Cooper AI (2022) Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J Am Chem Soc 144:9902–9909. https://doi.org/10.1021/jacs.2c02666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Huang W, Luo W, Li Y (2020) Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Mater Today 40:160–172. https://doi.org/10.1016/j.mattod.2020.07.003

    Article  CAS  Google Scholar 

  236. Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran CV, Borgmans S, Rogge SMJ, Leus K, Stevens CV, Martens JA, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P (2020) Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J Am Chem Soc 142:20107–20116. https://doi.org/10.1021/jacs.0c09684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Li L, Xu L, Hu Z, Yu JC (2021) Enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production. Adv Funct Mater 31:2106120. https://doi.org/10.1002/adfm.202106120

    Article  CAS  Google Scholar 

  238. Wu Q, Cao J, Wang X, Liu Y, Zhao Y, Wang H, Liu Y, Huang H, Liao F, Shao M, Kang Z (2021) A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat Commun 12:483. https://doi.org/10.1038/s41467-020-20823-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res 139:118–131. https://doi.org/10.1016/j.watres.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  240. Garcia-Muñoz P, Fresno F, de la Peña O’Shea VA, Keller N (2019) Ferrite materials for photoassisted environmental and solar fuels applications. Top Curr Chem 378:6. https://doi.org/10.1007/s41061-019-0270-3

    Article  CAS  Google Scholar 

  241. Li X, Liu W, Ma J, Wen Y, Wu Z (2015) High catalytic activity of magnetic FeOx/NiOy/SBA-15: the role of Ni in the bimetallic oxides at the nanometer level. Appl Catal B Environ 179:239–248. https://doi.org/10.1016/j.apcatb.2015.05.034

    Article  CAS  Google Scholar 

  242. Yalfani MS, Contreras S, Medina F, Sueiras JE (2011) Hydrogen substitutes for the in situ generation of H2O2: an application in the Fenton reaction. J Hazard Mater 192:340–346. https://doi.org/10.1016/j.jhazmat.2011.05.029

    Article  CAS  PubMed  Google Scholar 

  243. Underhill R, Lewis RJ, Freakley SJ, Douthwaite M, Miedziak PJ, Akdim O, Edwards JK, Hutchings GJ (2018) Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton’s process. Johnson Matthey Technol Rev 62:417–425. https://doi.org/10.1595/205651318X15302623075041

    Article  CAS  Google Scholar 

  244. Sable SS, Georgi A, Contreras S, Medina F (2021) Fenton-like oxidation of phenol with in-situ generated hydrogen peroxide and Pd/Fe-zeolite catalysts. Water Energy Nexus 4:95–102. https://doi.org/10.1016/j.wen.2021.06.001

    Article  CAS  Google Scholar 

  245. Mavrikis S, Perry SC, Leung PK, Wang L, Ponce de León C (2021) Recent advances in electrochemical water oxidation to produce hydrogen peroxide: a mechanistic perspective. ACS Sustain Chem Eng 9:76–91. https://doi.org/10.1021/acssuschemeng.0c07263

    Article  CAS  Google Scholar 

  246. Schmidt F, Bernhard M, Morell H, Pascaly M (2014) The HPPO process—a novel route to propylene oxide. DGMK Tagungsbericht 3:243–244

    Google Scholar 

  247. Amano F, Yamaguchi T, Tanaka T (2006) Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed titanium, vanadium, and chromium oxides on silica. J Phys Chem B 110:281–288. https://doi.org/10.1021/jp0557868

    Article  CAS  PubMed  Google Scholar 

  248. Nguyen V-H, Lin SD, Wu JC-S (2015) Synergetic photo-epoxidation of propylene over VTi/MCM-41 mesoporous photocatalysts. J Catal 331:217–227. https://doi.org/10.1016/j.jcat.2015.09.001

    Article  CAS  Google Scholar 

  249. Reed SM, Hutchison JE (2000) Green chemistry in the organic teaching laboratory: an environmentally benign synthesis of adipic acid. J Chem Educ 77:1627. https://doi.org/10.1021/ed077p1627

    Article  CAS  Google Scholar 

  250. Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647. https://doi.org/10.1126/science.281.5383.1646

    Article  CAS  PubMed  Google Scholar 

  251. Shang M (2016) The direct synthesis of adipic acid from cyclohexene and hydrogen peroxide by a continuous micro-flow process. Eindhoven University of Technology, The Netherlands

  252. Burek BO, Bormann S, Hollmann F, Bloh JZ, Holtmann D (2019) Hydrogen peroxide driven biocatalysis. Green Chem 21:3232–3249. https://doi.org/10.1039/C9GC00633H

    Article  CAS  Google Scholar 

  253. Gomez de Santos P, Cervantes FV, Tieves F, Plou FJ, Hollmann F, Alcalde M (2019) Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites. Tetrahedron 75:1827–1831. https://doi.org/10.1016/j.tet.2019.02.013

    Article  CAS  Google Scholar 

  254. Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14:147–197. https://doi.org/10.1007/BF02798431

    Article  CAS  PubMed  Google Scholar 

  255. Holtmann D, Hollmann F (2016) The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem 17:1391–1398. https://doi.org/10.1002/cbic.201600176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288. https://doi.org/10.1007/s00253-006-0417-3

    Article  CAS  PubMed  Google Scholar 

  257. Fernández-Fueyo E, van Wingerden M, Renirie R, Wever R, Ni Y, Holtmann D, Hollmann F (2015) Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem 7:4035–4038. https://doi.org/10.1002/cctc.201500862

    Article  CAS  Google Scholar 

  258. Björkling F, Godtfredsen SE, Kirk O (1990) Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes. J Chem Soc Chem Commun, 1301–1303. https://doi.org/10.1039/C39900001301

  259. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125. https://doi.org/10.1016/j.cbpa.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  260. Karich A, Scheibner K, Ullrich R, Hofrichter M (2016) Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction. J Mol Catal 134:238–246. https://doi.org/10.1016/j.molcatb.2016.10.014

    Article  CAS  Google Scholar 

  261. Maciá-Agulló JA, Corma A, Garcia H (2015) Photobiocatalysis: the power of combining photocatalysis and enzymes. Chem Eur J 21:10940–10959. https://doi.org/10.1002/chem.201406437

    Article  CAS  PubMed  Google Scholar 

  262. Özgen FF, Runda ME, Schmidt S (2021) Photo-biocatalytic cascades: combining chemical and enzymatic transformations fueled by light. ChemBioChem 22:790–806. https://doi.org/10.1002/cbic.202000587

    Article  CAS  PubMed  Google Scholar 

  263. Zhang W, Burek BO, Fernández-Fueyo E, Alcalde M, Bloh JZ, Hollmann F (2017) Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis. Angew Chem Int Ed 56:15451–15455. https://doi.org/10.1002/anie.201708668

    Article  CAS  Google Scholar 

  264. Holtmann D, Krieg T, Getrey L, Schrader J (2014) Electroenzymatic process to overcome enzyme instabilities. Catal Commun 51:82–85. https://doi.org/10.1016/j.catcom.2014.03.033

    Article  CAS  Google Scholar 

  265. Pan H, Gao Y, Li N, Zhou Y, Lin Q, Jiang J (2021) Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chem Eng J 408:127332. https://doi.org/10.1016/j.cej.2020.127332

    Article  CAS  Google Scholar 

  266. Chardon CP, Matthée T, Neuber R, Fryda M, Comninellis C (2017) Efficient electrochemical production of peroxodicarbonate applying DIACHEM® diamond electrodes. ChemistrySelect 2:1037–1040. https://doi.org/10.1002/slct.201601583

    Article  CAS  Google Scholar 

  267. Cotillas S, Sánchez-Carretero A, Cañizares P, Sáez C, Rodrigo MA (2011) Electrochemical synthesis of peroxyacetic acid using conductive diamond electrodes. Ind Eng Chem Res 50:10889–10893. https://doi.org/10.1021/ie2009422

    Article  CAS  Google Scholar 

  268. Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo MA (2008) Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. Electrochem Commun 10:602–606. https://doi.org/10.1016/j.elecom.2008.01.038

    Article  CAS  Google Scholar 

  269. Davis J, Baygents JC, Farrell J (2014) Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta 150:68–74. https://doi.org/10.1016/j.electacta.2014.10.104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The MOPGA program is acknowledged for funding the fellowship of Laura Valenzuela.

Funding

Research grant awarded to Laura Valenzuela by the program Make Our Planet Great Again from the French Ministry for Europe and Foreign Affairs and the French Ministry for Higher Education and Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the review: PG-M, NK; literature search: LV, PG-M, DW, TS, GEL, NK; data analysis: LV, PG-M, GEL, JZB, NK; writing—original draft preparation: LV, PG-M, DW, TS, GEL, AMR, HR, JZB, NK; critical revision of the work: LV, PG-M, AMR, HR, JZB, NK; funding acquisition: JB, HR, LV, NK; supervision: NK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicolas Keller.

Ethics declarations

Conflict of Interest

Authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Munoz, P., Valenzuela, L., Wegstein, D. et al. Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Top Curr Chem (Z) 381, 15 (2023). https://doi.org/10.1007/s41061-023-00423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00423-y

Keywords

Navigation