Skip to main content

Advertisement

Log in

Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Ferrites are a large class of oxides containing Fe3+ and at least another metal cation that have been investigated for and applied to a wide variety of fields ranging from mature technologies like circuitry, permanent magnets, magnetic recording and microwave devices to the most recent developments in areas like bioimaging, gas sensing and photocatalysis. In the last respect, although ferrites have been less studied than other types of semiconductors, they present interesting properties such as visible light absorption, tuneable optoelectronic properties and high chemical and photochemical stability. The versatility of their chemical composition and of their crystallographic structure opened a playground for developing new catalysts with enhanced efficiency. This article reviews the recent development of the application of ferrites to photoassisted processes for environmental remediation and for the synthesis of solar fuels. Applications in the photocatalytic degradation of pollutants in water and air, photo-Fenton, and solar fuels production, via photocatalytic and photoelectrochemical water splitting and CO2 reduction, are reviewed paying special attention to the relationships between the physico-chemical characteristics of the ferrite materials and their photoactivated performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [1]. Copyright SPIE

Fig. 2

Reproduced with permission from Ref. [7]. Copyright Elsevier and Wiley

Fig. 3

Adapted and reproduced with permission from Ref. [12]. Copyright AIP Publishing

Fig. 4

Reproduced with permission from Ref. [17]. Copyright Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [17]. Copyright Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [36]. Copyright Royal Society of Chemistry

Fig. 7

Adapted from Ref. [9]

Fig. 8

Reproduced with permission from Ref. [26]. Copyright MDPI

Fig. 9

Reproduced with permission from Ref. [33]. Copyright ACS

Fig. 10

Reproduced with permission Ref. [106]. Copyright Elsevier

Fig. 11

Reproduced with permission from Ref. [146]. Copyright American Chemical Society

Fig. 12

Reproduced with permission from Ref. [159]. Copyright Elsevier

Fig. 13

Reproduced with permission from Ref. [164]. Copyright Royal Society of Chemistry

Fig. 14

Reproduced with permission from Ref. [170]. Copyright Elsevier

Fig. 15

Reproduced with permission from Ref. [117]. Copyright American Chemical Society

Similar content being viewed by others

References

  1. Helaïli N, Bessekhouad Y, Bachari K, Trari M (2014) Synthesis and physical properties of the CuFe2–xMnxO4 (0 ≤ x ≤ 2) solid solution. Mater Chem Phys 148:734–743

    Google Scholar 

  2. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292

    CAS  Google Scholar 

  3. Levy D, Diella V, Dapiaggi M, Sani A, Gemmi M, Pavese A (2004) Equation of state, structural behaviour and phase diagram of synthetic MgFe2O4, as a function of pressure and temperature. Phys Chem Miner 31:122–129

    CAS  Google Scholar 

  4. Candeia RA, Bernardi MIB, Longo E, Santos IMG, Souza AG (2004) Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater Lett 58:569–572

    CAS  Google Scholar 

  5. Candeia RA, Souza MAF, Bernardi MIB, Maestrelli SC, Santos IMG, Souza AG, Longo E (2007) Monoferrite BaFe2O4 applied as ceramic pigment. Ceram Int 33:521–525

    CAS  Google Scholar 

  6. Valenzuela R (2012) Novel applications of ferrites 2012:ID 591839

    Google Scholar 

  7. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334

    CAS  Google Scholar 

  8. Structure Type 063: BaFe12O19 (magnetoplumbite). http://som.web.cmu.edu/structures/S063-BaFe12O19.html (2019)

  9. Taffa DH, Dillert R, Ulpe AC, Bauerfeind KCL, Bredow T, Bahnemann DW, Wark M (2009) Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3–xO4) for water splitting: a mini-review. J Photon Energy 7:1–25

    Google Scholar 

  10. Goodenough JB, Longo JM, Hellwege KH (1970) Crystallographic and magnetic properties of perovskite and perovskite-related compounds. Springer, Berlin

    Google Scholar 

  11. Dixon CAL, Kavanagh CM, Knight KS, Kockelmann W, Morrison FD, Lightfoot P (2015) Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3. J Solid State Chem 230:337–342

    CAS  Google Scholar 

  12. Yuan SJ, Cao YM, Li L, Qi TF, Cao SX, Zhang JC, DeLong LE, Cao G (2013) First-order spin reorientation transition and specific-heat anomaly in CeFeO3. J Appl Phys 114:113909

    Google Scholar 

  13. Kefeni KK, Mamba BB, Msagati TAM (2017) Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol 188:399–422

    CAS  Google Scholar 

  14. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55

    CAS  Google Scholar 

  15. Tatarchuk T, Bououdina M, Judith Vijaya J, John Kennedy L (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Fesenko O, Yatsenko L (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham, pp 305–325

    Google Scholar 

  16. Masunga N, Mmelesi OK, Kefeni KK, Mamba BB (2019) Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J Environ Chem Eng 7:103179

    CAS  Google Scholar 

  17. Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037

    CAS  Google Scholar 

  18. Amiri S, Shokrollahi H (2013) Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J Magn Magn Mater 345:18–23

    CAS  Google Scholar 

  19. Zi Z, Sun Y, Zhu X, Yang Z, Dai J, Song W (2009) Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 321:1251–1255

    CAS  Google Scholar 

  20. Harzali H, Saida F, Marzouki A, Megriche A, Baillon F, Espitalier F, Mgaidi A (2016) Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. J Magn Magn Mater 419:50–56

    CAS  Google Scholar 

  21. Rashmi SK, Bhojya Naik HS, Jayadevappa H, Viswanath R, Patil SB, Madhukara Naik M (2017) Solar light responsive Sm-Zn ferrite nanoparticle as efficient photocatalyst. Mater Sci Eng B 225:86–97

    CAS  Google Scholar 

  22. Vinosha PA, Das SJ (2018) Investigation on the role of pH for the structural, optical and magnetic properties of cobalt ferrite nanoparticles and its effect on the photo-Fenton activity. Mater Today Proc 5:8662–8671

    Google Scholar 

  23. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernandez-Garcia MP, Guedes A, Tavares PB, Greneche J, Araujo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    CAS  Google Scholar 

  24. Tatarchuk T, Bououdina M, Vijaya J, John Kennedy L (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications, Chapter 22. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies and applications, Springer Proceedings in Physics, vol 195. Springer, Berlin

    Google Scholar 

  25. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    CAS  Google Scholar 

  26. Zielinska-Jurek A, Bielan Z, Dudziak S, Wolak I, Sobczak Z, Klimczuk T, Nowaczyk G, Hupka J (2017) Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 7:360

    Google Scholar 

  27. Kurian M, Nair DS (2015) Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions. J Water Process Eng 8:e37–e49

    Google Scholar 

  28. Li R, Cai M, Xie Z, Zhang Q, Zeng Y, Liu H, Liu G, Lv W (2019) Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl Catal B 244:974–982

    CAS  Google Scholar 

  29. Peng K, Fu L, Yang H, Ouyang J (2016) Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci Rep 6:19723

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sannino D, Vaiano V, Ciambelli P, Isupova LA (2011) Structured catalysts for photo-Fenton oxidation of acetic acid. Catal Today 161:255–259

    CAS  Google Scholar 

  31. Soltani T, Lee B (2016) Improving heterogeneous photo-Fenton catalytic degradation of toluene under visible light irradiation through Ba-doping in BiFeO3 nanoparticles. J Mol Catal A Chem 425:199–207

    CAS  Google Scholar 

  32. Li X, Shi H, Zhu W, Zuo S, Lu X, Luo S, Li Z, Yao C, Chen Y (2018) Nanocomposite LaFe1–xNixO3/palygorskite catalyst for photo-assisted reduction of NOx: effect of Ni doping. Appl Catal B Environ 231:92–100

    CAS  Google Scholar 

  33. Li X, Shi H, Yan X, Zuo S, Zhang Y, Wang T, Luo S, Yao C, Ni C (2018) Palygorskite immobilized direct Z-scheme nitrogen-doped carbon quantum dots/PrFeO3 for photo-SCR removal of NOx. ACS Sustain Chem Eng 6:10616–10627

    CAS  Google Scholar 

  34. Ansari F, Soofivand F, Salavati-Niasari M (2019) Eco-friendly synthesis of cobalt hexaferrite and improvement of photocatalytic activity by preparation of carbonic-based nanocomposites for waste-water treatment. Compos Part B Eng 165:500–509

    CAS  Google Scholar 

  35. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent, 3330697A

  36. Danks AE, Hall SR, Schnepp Z (2016) The evolution of sol–gel chemistry as a technique for materials synthesis. Mater Horiz 3:91–112

    CAS  Google Scholar 

  37. Garcia-Muñoz P, Lefevre C, Robert D, Keller N (2019) Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Appl Catal B 248:120–128

    Google Scholar 

  38. Jamil TS, Abbas HA, Nasr RA, Vannier R- (2018) Visible light activity of BaFe1–xCuxO3–d as photocatalyst for atrazine degradation. Ecotoxicol Environ Saf 163:620–628

    CAS  PubMed  Google Scholar 

  39. Yin J, Liao G, Zhou J, Huang C, Ling Y, Lu P, Li L (2016) High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Sep Purif Technol 168:134–140

    CAS  Google Scholar 

  40. Luo J, Li R, Chen Y, Zhou X, Ning X, Zhan L, Ma L, Xu X, Xu L, Zhang L (2019) Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep Purif Technol 210:417–430

    CAS  Google Scholar 

  41. Liu Q, Xu Y, Wang J, Xie M, Wei W, Huang L, Xu H, Song Y, Li H (2018) Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloids Surf A Physicochem Eng Asp 553:114–124

    CAS  Google Scholar 

  42. Liu Z, Feng H, Xue S, Xie P, Li L, Hou X, Gong J, Wei X, Huang J, Wu D (2018) The triple-component Ag3PO4-CoFe2O4-GO synthesis and visible light photocatalytic performance. Appl Surf Sci 458:880–892

    CAS  Google Scholar 

  43. Diao Y, Yan Z, Guo M, Wang X (2018) Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore. J Hazard Mater 344:829–838

    CAS  PubMed  Google Scholar 

  44. Casbeer E, Sharma VK, Li X (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    CAS  Google Scholar 

  45. Ameer S, Gul IH, Mujahid M (2015) Ultra low permittivity/loss CoFe2O4 and CoFe2O4–rGO nanohybrids by novel 1-hexanol assisted solvothermal process. J Alloy Compd 642:78–82

    CAS  Google Scholar 

  46. Marinca TF, Chicinaş I, Isnard O (2013) Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceram Int 39:4179–4186

    CAS  Google Scholar 

  47. Zhang Z, Yao G, Zhang X, Ma J, Lin H (2015) Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram Int 41:4523–4530

    CAS  Google Scholar 

  48. Manova E, Kunev B, Paneva D, Mitov I, Petrov L, Estournès C, D’Orléan C, Rehspringer J, Kurmoo M (2004) Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem Mater 16:5689–5696

    CAS  Google Scholar 

  49. Yan Z, Gao J, Li Y, Zhang M, Guo M (2015) Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv 5:92778–92787

    CAS  Google Scholar 

  50. Thomson WT (2011) Uhlig’s corrosion handbook. Wiley, Hoboken

    Google Scholar 

  51. Hemmi Y, Ichikawa N, Saito N, Masuda T (1994) Electrochemical considerations regarding general corrosion of materials in a BWR primary circuit. J Nucl Sci Technol 31:1202–1213

    CAS  Google Scholar 

  52. Ramankutty CG, Sugunan S (2001) Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl Catal A 218:39–51

    CAS  Google Scholar 

  53. Reddy GK, Gunasekara K, Boolchand P, Smirniotis PG (2011) Cr- and Ce-doped ferrite catalysts for the high temperature water–gas shift reaction: TPR and Mossbauer spectroscopic study. J Phys Chem C 115:920–930

    CAS  Google Scholar 

  54. Šimša Z, Široký P, Koláček J, Brabers VAM (1980) Optical and magneto-optical properties of magnetite and manganese ferrites. J Magn Magn Mater 15–18:775–776

    Google Scholar 

  55. Balaji S, Kalai Selvan R, John Berchmans L, Angappan S, Subramanian K, Augustin CO (2005) Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Mater Sci Eng B 119:119–124

    Google Scholar 

  56. Harish KN, Bhojya Naik HS, Prashanth Kumar PN, Viswanath R (2012) Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Catal Sci Technol 2:1033–1039

    CAS  Google Scholar 

  57. Archer MD, Morris GC, Yim GK (1981) Electrochemical approaches to solar energy conversion: a brief overview and preliminary results obtained with n-type cobalt ferrite. J Electroanal Chem Interfacial Electrochem 118:89–100

    CAS  Google Scholar 

  58. Antonious MS, Etman M, Guyot M, Merceron T (1986) Photoelectrochemical characteristics of p- and n- type polycrystalline Ni-ferrite electrodes in aqueous solutions. Mater Res Bull 21:1515–1523

    CAS  Google Scholar 

  59. Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol 29:841–845

    CAS  PubMed  Google Scholar 

  60. Ranjit KT, Viswanathan B (1997) Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. J Photochem Photobiol A 108:79–84

    CAS  Google Scholar 

  61. Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75

    CAS  Google Scholar 

  62. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Google Scholar 

  63. Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185:270–277

    CAS  Google Scholar 

  64. Jang JS, Choi SH, Kim HG, Lee JS (2008) Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light. J Phys Chem C 112:17200–17205

    CAS  Google Scholar 

  65. Jang JS, Yoon KY, Xiao X, Fan FF, Bard AJ (2009) Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: effects of Ag–Fe2O3 nanocomposite and Sn doping. Chem Mater 21:4803–4810

    CAS  Google Scholar 

  66. Tu Y, You C, Chang C, Wang S, Chan T (2013) Adsorption behavior of As(III) onto a copper ferrite generated from printed circuit board industry. Chem Eng J 225:433–439

    CAS  Google Scholar 

  67. Tu Y, You C, Chang C, Wang S, Chan T (2012) Arsenate adsorption from water using a novel fabricated copper ferrite. Chem Eng J 198–199:440–448

    Google Scholar 

  68. Tu Y, You C (2014) Phosphorus adsorption onto green synthesized nano-bimetal ferrites: equilibrium, kinetic and thermodynamic investigation. Chem Eng J 251:285–292

    CAS  Google Scholar 

  69. Rehman MA, Yusoff I, Alias Y (2015) Fluoride adsorption by doped and un-doped magnetic ferrites CuCexFe2–xO4: preparation, characterization, optimization and modeling for effectual remediation technologies. J Hazard Mater 299:316–324

    CAS  PubMed  Google Scholar 

  70. Sun W, Pan W, Wang F, Xu N (2015) Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution. Chem Eng J 273:353–362

    CAS  Google Scholar 

  71. Duan S, Tang R, Xue Z, Zhang X, Zhao Y, Zhang W, Zhang J, Wang B, Zeng S, Sun D (2015) Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: synthesis and study on the kinetic and thermodynamic behaviors for its adsorption. Colloids Surf A 469:211–223

    CAS  Google Scholar 

  72. Li J, Ng DHL, Song P, Song Y, Kong C (2015) Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye. J Ind Eng Chem 23:290–298

    CAS  Google Scholar 

  73. Srivastava V, Sharma YC, Sillanpää M (2015) Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies. Appl Surf Sci 338:42–54

    CAS  Google Scholar 

  74. Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T, Zhang L (2014) The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem Eng J 246:88–96

    CAS  Google Scholar 

  75. Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607

    CAS  Google Scholar 

  76. An S, Liu X, Yang L, Zhang L (2015) Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: study in single- and binary-solute systems. Chem Eng Res Des 94:726–735

    CAS  Google Scholar 

  77. Zeng S, Duan S, Tang R, Li L, Liu C, Sun D (2014) Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J 258:218–228

    CAS  Google Scholar 

  78. Liu R, Fu H, Yin H, Wang P, Lu L, Tao Y (2015) A facile sol combustion and calcination process for the preparation of magnetic Ni0.5Zn0.5Fe2O4 nanopowders and their adsorption behaviors of Congo red. Powder Technol 274:418–425

    CAS  Google Scholar 

  79. Gao F, Chen X, Yin K, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu J- (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892

    CAS  Google Scholar 

  80. Li S, Jing L, Fu W, Yang L, Xin B, Fu H (2007) Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mater Res Bull 42:203–212

    CAS  Google Scholar 

  81. Thirumalairajan S, Girija K, Ganesh V, Mangalaraj D, Viswanathan C, Ponpandian N (2013) Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. Cryst Growth Des 13:291–302

    CAS  Google Scholar 

  82. Ismael M, Wark M (2019) Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 9:4

    Google Scholar 

  83. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrogen Energy 35:12161–12168

    CAS  Google Scholar 

  84. Gong S, Xie Z, Li W, Wu X, Han N, Chen Y (2019) Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Appl Catal B 241:578–587

    CAS  Google Scholar 

  85. Zaharieva K, Rives V, Tsvetkov M, Cherkezova-Zheleva Z, Kunev B, Trujillano R, Mitov I, Milanova M (2015) Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation. Mater Chem Phys 160:271–278

    CAS  Google Scholar 

  86. Mahto TK, Roy A, Sahoo B, Sahu SK (2015) Citric acid fuctionalized magnetic ferrite nanoparticles for photocatalytic degradation of azo dye. J Nanosci Nanotechnol 15:273–280

    CAS  PubMed  Google Scholar 

  87. El-Rafei AM, El-Kalliny AS, Gad-Allah TA (2017) Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification. J Magn Magn Mater 428:92–98

    CAS  Google Scholar 

  88. Patil SB, Bhojya Naik HS, Nagaraju G, Viswanath R, Rashmi SK, Vijay Kumar M (2018) Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities. Mater Chem Phys 212:351–362

    CAS  Google Scholar 

  89. Roonasi P, Mazinani M (2017) Synthesis and application of barium ferrite/activated carbon composite as an effective solar photocatalyst for discoloration of organic dye contaminants in wastewater. J Environ Chem Eng 5:3822–3827

    CAS  Google Scholar 

  90. Song Y, Xue S, Wang G, Jin J, Liang Q, Li Z, Xu S (2018) Enhanced photocatalytic decomposition of an organic dye under visible light with a stable LaFeO3/AgBr heterostructured photocatalyst. J Phys Chem Solids 121:329–338

    CAS  Google Scholar 

  91. Malathi A, Arunachalam P, Kirankumar VS, Madhavan J, Al-Mayouf AM (2018) An efficient visible light driven bismuth ferrite incorporated bismuth oxyiodide (BiFeO3/BiOI) composite photocatalytic material for degradation of pollutants. Opt Mater 84:227–235

    CAS  Google Scholar 

  92. Bhoi YP, Mishra BG (2018) Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chem Eng J 344:391–401

    CAS  Google Scholar 

  93. Zhu K, Wang J, Wang Y, Jin C, Ganeshraja AS (2016) Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of Orange II. Catal Sci Technol 6:2296–2304

    CAS  Google Scholar 

  94. Li C, Wang J, Wang B, Gong J, Lin Z (2012) Direct formation of reusable TiO2/CoFe2O4 heterogeneous photocatalytic fibers via two-spinneret electrospinning. J Nanosci Nanotechnol 12:2496–2502

    CAS  PubMed  Google Scholar 

  95. Mandal S, Natarajan S, Tamilselvi A, Mayadevi S (2016) Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment. J Environ Chem Eng 4:2706–2712

    CAS  Google Scholar 

  96. Chen C, Butler E, Ahmad MA, Hung Y, Fu Y (2014) Characterizations of TiO2@Mn-Zn ferrite powders for magnetic photocatalyst prepared from used alkaline batteries and waste steel pickling liquor. Mater Res Bull 50:178–182

    CAS  Google Scholar 

  97. Meng W, Hu R, Yang J, Du Y, Li J, Wang H (2016) Influence of lanthanum-doping on photocatalytic properties of BiFeO3 for phenol degradation. Cuihua Xuebao Chin J Catal 37:1283–1292

    CAS  Google Scholar 

  98. Xu Y-, Rao H-, Wang X-, Chen H-, Kuang D-, Su C- (2016) In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. J Mater Chem A 4:5124–5129

    CAS  Google Scholar 

  99. Li R, Cai M, Xie Z, Zhang Q, Zeng Y, Liu H, Liu G, Lv W (2019) Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl Catal B Environ 244:974–982

    CAS  Google Scholar 

  100. Dumitru R, Ianculescu A, Păcurariu C, Lupa L, Pop A, Vasile B, Surdu A, Manea F (2019) BiFeO3-synthesis, characterization and its photocatalytic activity towards doxorubicin degradation from water. Ceram Int 45:2789–2802

    CAS  Google Scholar 

  101. Aghdam TR, Mehrizadeh H, Salari D, Tseng H-, Niaei A, Amini A (2018) Photocatalytic removal of NOx over immobilized BiFeO3 nanoparticles and effect of operational parameters. Korean J Chem Eng 35:994–999

    CAS  Google Scholar 

  102. Gao J, Wu S, Han Y, Tan F, Shi Y, Liu M, Li X (2018) 3D mesoporous CuFe2O4 as a catalyst for photo-Fenton removal of sulfonamide antibiotics at near neutral pH. J Colloid Interface Sci 524:409–416

    CAS  PubMed  Google Scholar 

  103. Samoila P, Cojocaru C, Sacarescu L, Dorneanu PP, Domocos A, Rotaru A (2017) Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol–gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal B 202:21–32

    CAS  Google Scholar 

  104. Phan TTN, Nikoloski AN, Bahri PA, Li D (2018) Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. J Ind Eng Chem 61:53–64

    CAS  Google Scholar 

  105. Li Y, Chen D, Fan S, Yang T (2019) Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng 96:185–192

    CAS  Google Scholar 

  106. Garcia-Muñoz P, Fresno F, Lefevre C, Robert D, Keller N (2020) Highly robust La1–xTixFeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water. Appl Catal B Environ 262:118310

    Google Scholar 

  107. Yang X, Wang D (2018) Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693

    CAS  Google Scholar 

  108. Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36

    CAS  PubMed  Google Scholar 

  109. Christoforidis KC, Fornasiero P (2017) Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 9:1523–1544

    CAS  Google Scholar 

  110. Colmenares JC (2019) Selective redox photocatalysis: is there any chance for solar bio-refineries? Curr Opin Green Sustain Chem 15:38–46

    Google Scholar 

  111. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  PubMed  Google Scholar 

  112. Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Green energy and technology, vol 71. Springer, Berlin

    Google Scholar 

  113. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    CAS  Google Scholar 

  114. Dillert R, Taffa DH, Wark M, Bredow T, Bahnemann DW (2015) Research Update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater. https://doi.org/10.1063/1.4931763

    Article  Google Scholar 

  115. Taffa DH, Dillert R, Ulpe AC, Bauerfeind KCL, Bredow T, Bahnemann DW, Wark M (2017) Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3–xO4) for water splitting: a mini-review. J Photon Energy 7:012009

    Google Scholar 

  116. Cao J, Kako T, Li P, Ouyang S, Ye J (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13:275–278

    CAS  Google Scholar 

  117. Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc 132:17343–17345

    CAS  PubMed  Google Scholar 

  118. Ida S, Yamada K, Matsunaga T, Hagiwara H, Ishihara T, Taniguchi T, Koinuma M, Matsumoto Y (2011) Photoelectrochemical hydrogen production from water using p-type CaFe2O4 and n-type ZnO. Electrochemistry 79:797–800

    CAS  Google Scholar 

  119. Ida S, Yamada K, Matsuka M, Hagiwara H, Ishihara T (2012) Photoelectrochemical hydrogen production from water using p-type and n-type oxide semiconductor electrodes. Electrochim Acta 82:397–401

    CAS  Google Scholar 

  120. Matsumoto Y, Omae M, Sugiyama K, Sato E- (1987) New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J Phys Chem 91:577–581

    CAS  Google Scholar 

  121. Matsumoto Y, Sugiyama K, Sato E- (1988) Improvement of CaFe2O4 photocathode by doping with Na and Mg. J Solid State Chem 74:117–125

    CAS  Google Scholar 

  122. Cao J, Xing J, Zhang Y, Tong H, Bi Y, Kako T, Takeguchi M, Ye J (2013) Photoelectrochemical properties of nanomultiple CaFe2O4/ZnFe2O4 pn junction photoelectrodes. Langmuir 29:3116–3124

    CAS  PubMed  Google Scholar 

  123. Sekizawa K, Nonaka T, Arai T, Morikawa T (2014) Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent. ACS Appl Mater Interfaces 6:10969–10973

    CAS  PubMed  Google Scholar 

  124. Kung HH, Jarrett HS, Sleight AW, Ferretti A (1977) Semiconducting oxide anodes in photoassisted electrolysis of water. J Appl Phys 48:2463–2469

    CAS  Google Scholar 

  125. Archer MD, Morris GC, Yim GK (1981) Electrochemical approaches to solar energy conversion: a brief overview and preliminary results obtained with n-type cobalt ferrite. J Electroanal Chem 118:89–100

    CAS  Google Scholar 

  126. Yang H, Mao Y, Li M, Liu P, Tong Y (2013) Electrochemical synthesis of CoFe2O4 porous nanosheets for visible light driven photoelectrochemical applications. New J Chem 37:2965–2968

    CAS  Google Scholar 

  127. Rekhila G, Bessekhouad Y, Trari M (2013) Visible light hydrogen production on the novel ferrite NiFe2O4. Int J Hydrogen Energy 38:6335–6343

    CAS  Google Scholar 

  128. de Haart LGJ, Blasse G (1985) Photoelectrochemical properties of ferrites with the spinel structure. J Electrochem Soc 132:2933–2938

    Google Scholar 

  129. Benko FA, Koffyberg FP (1986) The effect of defects on some photoelectrochemical properties of semiconducting MgFe2O4. Mater Res Bull 21:1183–1188

    CAS  Google Scholar 

  130. Zazoua H, Boudjemaa A, Chebout R, Bachari K (2014) Enhanced photocatalytic hydrogen production under visible light over a material based on magnesium ferrite derived from layered double hydroxides (LDHs). Int J Energy Res 38:2010–2018

    CAS  Google Scholar 

  131. Chang BT, Jakani M, Campet G, Claverie J (1988) Photoelectrochemical study of a spinel-type titanomagnetite. J Solid State Chem 72:201–208

    CAS  Google Scholar 

  132. Matsumoto Y, Omae M, Watanabe I, Sato E- (1986) Photoelectrochemical properties of the Zn-Ti-Fe spinel oxides. J Electrochem Soc 133:711–716

    CAS  Google Scholar 

  133. Tahir AA, Wijayantha KGU (2010) Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J Photochem Photobiol A Chem 216:119–125

    CAS  Google Scholar 

  134. Tahir AA, Burch HA, Wijayantha KGU, Pollet BG (2013) A new route to control texture of materials: nanostructured ZnFe2O4 photoelectrodes. Int J Hydrogen Energy 38:4315–4323

    CAS  Google Scholar 

  135. Senftle TP, Carter EA (2017) The holy grail: chemistry enabling an economically viable CO2 capture, utilization, and storage strategy. Acc Chem Res 50:472–475

    CAS  PubMed  Google Scholar 

  136. Fresno F, Villar-García IJ, Collado L, Alfonso-González E, Renones P, Barawi M, De La Pena O’Shea VA (2018) Mechanistic view of the main current issues in photocatalytic CO2 reduction. J Phys Chem Lett 9:7192–7204

    CAS  PubMed  Google Scholar 

  137. Mota FM, Kim DH (2019) From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem Soc Rev 48:205–259

    Google Scholar 

  138. Ran J, Jaroniec M, Qiao S (2018) Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. https://doi.org/10.1002/adma.201704649

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lais A, Gondal MA, Dastageer MA (2018) Semiconducting oxide photocatalysts for reduction of CO2 to methanol. Environ Chem Lett 16:183–210

    CAS  Google Scholar 

  140. Matsumoto Y (1996) Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J Solid State Chem 126:227–234

    CAS  Google Scholar 

  141. Neudeck C, Kim Y-, Ogasawara W, Shida Y, Meldrum F, Walsh D (2011) General route to functional metal oxide nanosuspensions, enzymatically deshelled nanoparticles, and their application in photocatalytic water splitting. Small 7:869–873

    CAS  PubMed  Google Scholar 

  142. Mangrulkar PA, Joshi MM, Tijare SN, Polshettiwar V, Labhsetwar NK, Rayalu SS (2012) Nano cobalt oxides for photocatalytic hydrogen production. Int J Hydrogen Energy 37:10462–10466

    CAS  Google Scholar 

  143. Büchler M, Schmuki P, Böhni H, Stenberg T, Mäntylä T (1998) Comparison of the semiconductive properties of sputter-deposited iron oxides with the passive film on iron. J Electrochem Soc 145:378–385

    Google Scholar 

  144. Gobara HM, Nassar IM, El Naggar AMA, Eshaq G (2017) Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process. Energy 118:1234–1242

    CAS  Google Scholar 

  145. Peng T, Zhang X, Lv H, Zan L (2012) Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal Commun 28:116–119

    CAS  Google Scholar 

  146. Hong D, Yamada Y, Sheehan M, Shikano S, Kuo C-, Tian M, Tsung C-, Fukuzumi S (2014) Mesoporous nickel ferrites with spinel structure prepared by an aerosol spray pyrolysis method for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 2:2588–2594

    CAS  Google Scholar 

  147. Domínguez-Arvizu JL, Jiménez-Miramontes JA, Salinas-Gutiérrez JM, Meléndez-Zaragoza MJ, López-Ortiz A, Collins-Martínez V (2017) Optical properties determination of NiFe2O4 nanoparticles and their photocatalytic evaluation towards hydrogen production. Int J Hydrogen Energy 42:30242–30248

    Google Scholar 

  148. Núñez J, Fresno F, Platero-Prats AE, Jana P, Fierro JLG, Coronado JM, Serrano DP, De La Peña O’Shea VA (2016) Ga-promoted photocatalytic H2 production over Pt/ZnO nanostructures. ACS Appl Mater Interfaces 8:23729–23738

    PubMed  Google Scholar 

  149. Zeng J, Zeng W, Zeng H (2017) In situ plasmonic Au nanoparticle anchored nickel ferrite: an efficient plasmonic photocatalyst for fluorescein-sensitized hydrogen evolution under visible light irradiation. J Solid State Chem 253:294–304

    CAS  Google Scholar 

  150. Rodríguez-Rodríguez AA, Moreno-Trejo MB, Meléndez-Zaragoza MJ, Collins-Martínez V, López-Ortiz A, Martínez-Guerra E, Sánchez-Domínguez M (2018) Spinel-type ferrite nanoparticles: synthesis by the oil-in-water microemulsion reaction method and photocatalytic water-splitting evaluation. Int J Hydrogen Energy 44:12421–12429

    Google Scholar 

  151. Dom R, Subasri R, Hebalkar NY, Chary AS, Borse PH (2012) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2:12782–12791

    CAS  Google Scholar 

  152. Boudjemaa A, Popescu I, Juzsakova T, Kebir M, Helaili N, Bachari K, Marcu I- (2016) M-substituted (M = Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. Int J Hydrogen Energy 41:11108–11118

    CAS  Google Scholar 

  153. Ortega López Y, Medina Vázquez H, Salinas Gutiérrez J, Guzmán Velderrain V, López Ortiz A, Collins Martínez V (2015) Synthesis method effect of CoFe2O4 on its photocatalytic properties for H2 production from water and visible light. J Nanomater 2015:985872

    Google Scholar 

  154. Yang H, Yan J, Lu Z, Cheng X, Tang Y (2009) Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J Alloys Compd 476:715–719

    CAS  Google Scholar 

  155. Dom R, Kim HG, Borse PH (2017) Photo chemical hydrogen generation from orthorhombic CaFe2O4 nanoparticles synthesized by different methods. Chem Select 2:2556–2564

    CAS  Google Scholar 

  156. Jiménez-Miramontes JA, Domínguez-Arvizu JL, Salinas-Gutiérrez JM, Meléndez-Zaragoza MJ, López-Ortiz A, Collins-Martínez V (2017) Synthesis, characterization and photocatalytic evaluation of strontium ferrites towards H2 production by water splitting under visible light irradiation. Int J Hydrogen Energy 42:30257–30266

    Google Scholar 

  157. Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu SS, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy 37:10451–10456

    CAS  Google Scholar 

  158. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P (2016) Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment. Int J Hydrogen Energy 41:959–966

    CAS  Google Scholar 

  159. Chen Z, Fan T, Zhang Q, He J, Fan H, Sun Y, Yi X, Li J (2019) Interface engineering: surface hydrophilic regulation of LaFeO3 towards enhanced visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 536:105–111

    CAS  PubMed  Google Scholar 

  160. Hojamberdiev M, Kawashima K, Kumar M, Yamakata A, Yubuta K, Gurlo A, Hasegawa M, Domen K, Teshima K (2017) Engaging the flux-grown La1–xSrxFe1–yTiyO3 crystals in visible-light-driven photocatalytic hydrogen generation. Int J Hydrogen Energy 42:27024–27033

    CAS  Google Scholar 

  161. Chen D, Zhang F, Li Q, Wang W, Qian G, Jin Y, Xu Z (2017) A promising synergistic effect of nickel ferrite loaded on the layered double hydroxide-derived carrier for enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 42:867–875

    CAS  Google Scholar 

  162. Matsumoto Y, Obata M, Hombo J (1994) Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J Phys Chem 98:2950–2951

    CAS  Google Scholar 

  163. Xiao J, Yang W, Gao S, Sun C, Li Q (2018) Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination. J Mater Sci Technol 34:2331–2336

    Google Scholar 

  164. Kim HG, Borse PH, Jang JS, Jeong ED, Jung O-, Suh YJ, Lee JS (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem Commun 39:5889–5891

    Google Scholar 

  165. Vijayaraghavan T, Lakshmana Reddy N, Shankar MV, Vadivel S, Ashok A (2018) A co-catalyst free, eco-friendly, novel visible light absorbing iron based complex oxide nanocomposites for enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 43:14417–14426

    CAS  Google Scholar 

  166. An X, Cheng D, Dai L, Wang B, Ocampo HJ, Nasrallah J, Jia X, Zou J, Long Y, Ni Y (2017) Synthesis of nano-fibrillated cellulose/magnetite/titanium dioxide (NFC@Fe3O4@TNP) nanocomposites and their application in the photocatalytic hydrogen generation. Appl Catal B Environ 206:53–64

    CAS  Google Scholar 

  167. Beydoun D, Amal R, Low GK-, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. activity and photodissolution. J Phys Chem B 104:4387–4396

    CAS  Google Scholar 

  168. Hafeez HY, Lakhera SK, Karthik P, Anpo M, Neppolian B (2018) Facile construction of ternary CuFe2O4–TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl Surf Sci 449:772–779

    CAS  Google Scholar 

  169. Uddin MR, Khan MR, Rahman MW, Yousuf A, Cheng CK (2015) Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. React Kinet Mech Catal 116:589–604

    CAS  Google Scholar 

  170. Song G, Xin F, Yin X (2015) Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol. J Colloid Interface Sci 442:60–66

    CAS  PubMed  Google Scholar 

  171. Song G, Wu X, Xin F, Yin X (2017) ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Front Chem Sci Eng 11:197–204

    CAS  Google Scholar 

  172. Song G, Wu X, Xin F, Yin X (2017) Synthesis of different shapes ZnFe2O4-BiOCl nanocomposites for photocatalytic reduction of CO2 in cyclohexanol. J Nanosci Nanotechnol 17:2438–2446

    CAS  PubMed  Google Scholar 

  173. Soto-Arreola A, Huerta-Flores AM, Mora-Hernández JM, Torres-Martínez LM (2018) Improved photocatalytic activity for water splitting over MFe2O4–ZnO (M = Cu and Ni) type-ll heterostructures. J Photochem Photobiol A Chem 364:433–442

    CAS  Google Scholar 

  174. Karamian E, Sharifnia S (2018) Enhanced visible light photocatalytic activity of BiFeO3-ZnO p–n heterojunction for CO2 reduction. Mater Sci Eng B Solid State Adv Technol 238–239:142–148

    Google Scholar 

  175. Guo J, Wang K, Wang X (2017) Photocatalytic reduction of CO2 with H2O vapor under visible light over Ce doped ZnFe2O4. Catal Sci Technol 7:6013–6025

    CAS  Google Scholar 

  176. Khan I, Sun N, Zhang Z, Li Z, Humayun M, Ali S, Qu Y, Jing L (2019) Improved visible-light photoactivities of porous LaFeO3 by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catal Sci Technol 9:3149–3157

    CAS  Google Scholar 

  177. Kwon S, Liao P, Stair PC, Snurr RQ (2016) Alkaline-earth metal-oxide overlayers on TiO2: application toward CO2 photoreduction. Catal Sci Technol 6:7885–7895

    CAS  Google Scholar 

  178. Ong W-, Tan L-, Ng YH, Yong S-, Chai S- (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    CAS  PubMed  Google Scholar 

  179. Chen J, Zhao D, Diao Z, Wang M, Guo L, Shen S (2015) Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Appl Mater Interfaces 7:18843–18848

    CAS  PubMed  Google Scholar 

  180. Chen J, Zhao D, Diao Z, Wang M, Shen S (2016) Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification. Sci Bull 61:292–301

    CAS  Google Scholar 

  181. Acharya S, Mansingh S, Parida KM (2017) The enhanced photocatalytic activity of g-C3N4-LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg Chem Front 4:1022–1032

    CAS  Google Scholar 

  182. Xu K, Feng J (2017) Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv 7:45369–45376

    CAS  Google Scholar 

  183. Xu K, Xu H, Feng G, Feng J (2017) Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO3/g-C3N4 heterojunctions. New J Chem 41:14602–14609

    CAS  Google Scholar 

  184. Fan W, Li M, Bai H, Xu D, Chen C, Li C, Ge Y, Shi W (2016) Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir 32:1629–1636

    CAS  PubMed  Google Scholar 

  185. Jiang J, Fan W, Zhang X, Bai H, Liu Y, Huang S, Mao B, Yuan S, Liu C, Shi W (2016) Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J Chem 40:538–544

    CAS  Google Scholar 

  186. Guijarro N, Bornoz P, Prévot M, Yu X, Zhu X, Johnson M, Jeanbourquin X, Le Formal F, Sivula K (2018) Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain Energy Fuels 2:103–117

    CAS  Google Scholar 

  187. Rezaul Karim KM, Ong HR, Abdullah H, Yousuf A, Cheng CK, Rahman Khan MM (2018) Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation. Int J Hydrogen Energy 43:18185–18193

    CAS  Google Scholar 

  188. Kim JH, Kim JH, Jang J-, Kim JY, Choi SH, Magesh G, Lee J, Lee JS (2015) Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv Energy Mater. https://doi.org/10.1002/aenm.201401933

    Article  Google Scholar 

  189. Kim JH, Jang YJ, Kim JH, Jang J-, Choi SH, Lee JS (2015) Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 7:19144–19151

    CAS  PubMed  Google Scholar 

  190. Hufnagel AG, Peters K, Müller A, Scheu C, Fattakhova-Rohlfing D, Bein T (2016) Zinc ferrite photoanode nanomorphologies with favorable kinetics for water-splitting. Adv Funct Mater 26:4435–4443

    CAS  Google Scholar 

  191. Sharma P, Jang J, Lee JS (2019) Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode. ChemCatChem 11:157–179

    CAS  Google Scholar 

  192. Sivula K (2013) Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett 4:1624–1633

    CAS  PubMed  Google Scholar 

  193. McDonald KJ, Choi KS (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23:4863–4869

    CAS  Google Scholar 

  194. Guo Y, Fu Y, Liu Y, Shen S (2014) Photoelectrochemical activity of ZnFe2O4 modified a-Fe2O3 nanorod array films. RSC Adv 4:36967–36972

    CAS  Google Scholar 

  195. Dom R, Kumar GS, Hebalkar NY, Joshi SV, Borse PH (2013) Eco-friendly ferrite nanocomposite photoelectrode for improved solar hydrogen generation. RSC Adv 3:15217–15224

    CAS  Google Scholar 

  196. Kim JY, Magesh G, Youn DH, Jang J-, Kubota J, Domen K, Lee JS (2013) Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep 3:2681

    PubMed  PubMed Central  Google Scholar 

  197. Kim ES, Kang HJ, Magesh G, Kim JY, Jang J-, Lee JS (2014) Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl Mater Interfaces 6:17762–17769

    CAS  PubMed  Google Scholar 

  198. Ahmed MG, Kandiel TA, Ahmed AY, Kretschmer I, Rashwan F, Bahnemann D (2015) Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J Phys Chem C 119:5864–5871

    CAS  Google Scholar 

  199. Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V (2017) Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B 207:182–194

    CAS  Google Scholar 

  200. Chen H, Sun X, Xu X (2017) Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production. Electrochim Acta 252:138–146

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the European Fund for regional development (EFRE/FEDER) for the financial support of the PHOTOPUR project which is performed within the framework of Interreg V and the Sciences Offensive. Financial support from project SOLPAC: ENE2017-89170-R, MCIU/AEI/FEDER, EU from the Spanish Ministry of Science, Innovation and Universities is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Garcia-Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Heterogeneous Photocatalysis”, edited by Mario J. Muñoz-Batista, Alexander Navarrete Muñoz and Rafael Luque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Muñoz, P., Fresno, F., de la Peña O’Shea, V.A. et al. Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Top Curr Chem (Z) 378, 6 (2020). https://doi.org/10.1007/s41061-019-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0270-3

Keywords

Navigation