Skip to main content
Log in

Vibration Analysis of Flexible Shafts with Active Magnetic Bearings

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, primary resonance of a flexible rotor levitated by active magnetic bearings (AMBs) is investigated. The shaft has a linear flexural motion, but the AMB has nonlinear characteristic. Although the equations of motion are linear, the boundary conditions are nonlinear. The renormalization group method is directly applied to partial differential equations of motion with nonlinear boundary conditions. The effect of bearing parameters on the frequency response of system is investigated, and it is shown that near the primary resonances only the forward modes are excited. It is shown that the system exhibits many typical nonlinear behaviors, including multiple-valued solutions, jump phenomenon and softening nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Shaft cross-section area

A α :

Cross-section area of an electromagnet

\( c_{0} \) :

Air gap between the stator and shaft

C :

External damping coefficient

E :

Modulus of elasticity

\( e_{1} (x),\,e_{2} (x) \) :

Eccentricity distributions with respect to y- and z-axes

\( F_{i} \) :

Electromagnetic force in i direction

\( I_{0} \) :

Bias current

\( I_{D} \) :

Diametrical mass moment of inertia

\( I_{i} \) :

Current in coil i

\( i_{v} ,\,\,i_{w} \) :

Current control in v and w directions

\( k_{0} \) :

Proportional gain

\( k_{d} \) :

Derivative gain

l :

Shaft length

N :

Number of winding in each electromagnet

R :

Shaft radius

v, w :

Transverse displacement of rotor in y and z directions

α :

Half angle between two radial electromagnets

\( \beta_{\text{f}} \) :

Forward whirling frequency

\( \beta_{\text{b}} \) :

Backward whirling frequency

Ω:

Spinning speed

θ :

Half angle of the radial electromagnetic circuit

\( \rho \) :

Mass density

\( \sigma \) :

Detuning parameter

\( \phi (x) \) :

Mode shape

\( \mu_{0} \) :

Permeability of vacuum

\( \delta_{i} \) :

Clearance between coil and shaft in i direction

References

  • Amer Y, Hegazy U (2007) Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness. Chaos, Solitons Fractals 34(4):1328–1345

    Article  Google Scholar 

  • Amer Y et al (2006) Dynamic behavior of an AMB/supported rotor subject to parametric excitation. J Vib Acoust 128(5):646–652

    Article  Google Scholar 

  • Chinta M, Palazzolo A, Kascak A (1996) Quasiperiodic vibration of a rotor in a magnetic bearing with geometric coupling. In: Proceedings of fifth international symposium on magnetic bearings

  • Ebrahimi R, Ghayour M, Khanlo HM (2017) Chaotic vibration analysis of a coaxial rotor system in active magnetic bearings and contact with auxiliary bearings. J Comput Nonlinear Dyn 12(3):031012

    Article  Google Scholar 

  • Eissa M, Hegazy U, Amer Y (2008a) A time-varying stiffness rotor-active magnetic bearings under combined resonance. J Appl Mech 75:1–12

    Google Scholar 

  • Eissa M, Hegazy U, Amer Y (2008b) Dynamic behavior of an AMB supported rotor subject to harmonic excitation. Appl Math Model 32(7):1370–1380

    Article  Google Scholar 

  • Hosseini SAA (2013) Analytical approximation of weakly nonlinear continuous systems using renormalization group method. Appl Math Model 37(4):2102–2114

    Article  MathSciNet  Google Scholar 

  • Hosseini SAA, Karimzadeh Z (2014) A note on higher order renormalization group method. Sci Iran Trans B Mech Eng 21(4):1347

    Google Scholar 

  • Hosseini SAA, Khadem SE (2009) Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech Mach Theory 44:272–288

    Article  Google Scholar 

  • Hosseini SAA, Yektanezhad (2019) A Primary resonance analysis of a nonlinear flexible shaft supported by active magnetic bearings using renormalization group method

  • Inayat-Hussain JI (2009) Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings. Chaos, Solitons Fractals 41(5):2664–2671

    Article  Google Scholar 

  • Jang M-J, Chen C-K (2001) Bifurcation analysis in flexible rotor supported by active magnetic bearing. Int J Bifurc Chaos 11(08):2163–2178

    Article  Google Scholar 

  • Jang M-J, Chen C-L, Tsao Y-M (2005) Sliding mode control for active magnetic bearing system with flexible rotor. J Frankl Inst 342(4):401–419

    Article  Google Scholar 

  • Ji J, Hansen C (2001) Non-linear oscillations of a rotor in active magnetic bearings. J Sound Vib 240(4):599–612

    Article  Google Scholar 

  • Ji J, Hansen CH (2004) Approximate solutions and chaotic motions of a piecewise nonlinear–linear oscillator. Chaos, Solitons Fractals 20(5):1121–1133

    Article  Google Scholar 

  • Ji J, Yu L, Leung A (2000) Bifurcation behavior of a rotor supported by active magnetic bearings. J Sound Vib 235(1):133–151

    Article  Google Scholar 

  • Kamel M, Bauomy H (2009) Nonlinear oscillation of a rotor-AMB system with time varying stiffness and multi-external excitations. J Vib Acoust 131(3):031009

    Article  Google Scholar 

  • Kamel M, Bauomy H (2010a) Nonlinear study of a rotor–AMB system under simultaneous primary-internal resonance. Appl Math Model 34(10):2763–2777

    Article  MathSciNet  Google Scholar 

  • Kamel M, Bauomy H (2010b) Nonlinear behavior of a rotor-AMB system under multi-parametric excitations. Meccanica 45(1):7–22

    Article  Google Scholar 

  • Steinschaden N, Springer H (1999) Some nonlinear effects of magnetic bearings. In: Proceedings of the DETC ASME conference, Citeseer

  • Virgin LN, Walsh TF, Knight JD (1994) Nonlinear behavior of a magnetic bearing system. in ASME 1994 International gas turbine and aeroengine congress and exposition. American Society of Mechanical Engineers

  • Yamamoto T, Ishida Y (2001) Linear and nonlinear rotordynamics: a modern treatment with applications. Wiley, Hoboken

    Google Scholar 

  • Zhang W, Zhan X (2005) Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn 41(4):331–359

    Article  MathSciNet  Google Scholar 

  • Zhang W, Zu JW (2003) Analysis of nonlinear dynamics for a rotor-active magnetic bearing system with time-varying stiffness: Part I—formulation and local bifurcations. in ASME 2003 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers

  • Zhang W, Zu JW (2008) Transient and steady nonlinear responses for a rotor-active magnetic bearings system with time-varying stiffness. Chaos, Solitons Fractals 38(4):1152–1167

    Article  Google Scholar 

  • Zhang W, Wang F, Zu JW (2004) Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam. J Sound Vib 278(4):949–974

    Article  MathSciNet  Google Scholar 

  • Zhang W, Yao M, Zhan X (2006) Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons Fractals 27(1):175–186

    Article  Google Scholar 

  • Zhang W, Zu J, Wang F (2008) Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons Fractals 35(3):586–608

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Hosseini.

Appendix

Appendix

  1. 1.

    Dimensionless quantities are defined as

    $$ \begin{aligned} s^{*} & = \frac{x}{l},\,\,v^{*} = \frac{v}{l},\,\,w^{*} = \frac{w}{l},\,\,t^{*} = \sqrt {\frac{{D_{66} }}{{ml^{4} }}} t,\,\,C^{*} = \frac{{l^{2} }}{{\sqrt {mD_{66} } }}C,\,\,I_{2}^{*} = \frac{{I_{D} }}{{ml^{2} }},\,\,\Omega ^{*} = \sqrt {\frac{{ml^{4} }}{{D_{66} }}}\Omega ,\,\, \\ \alpha_{1}^{*} & = \frac{{l^{3} }}{{D_{66} }}\alpha_{1} ,\,\,\alpha_{2}^{*} = \frac{{l^{5} }}{{D_{66} }}\alpha_{2} ,\,\alpha_{3}^{*} = \frac{{l^{5} }}{{D_{66} }}\alpha_{3} ,\,\,\mu_{1}^{*} = \,\frac{l}{{\sqrt {mD_{66} } }}\mu_{1} ,\,\,\mu_{2}^{*} = \,\frac{{l^{3} }}{{\sqrt {mD_{66} } }}\mu_{2} ,\,\, \\ \mu_{3}^{*} & = \,\frac{{l^{3} }}{{\sqrt {mD_{66} } }}\mu_{3} ,\,\,\mu_{4}^{*} = \frac{l}{m}\mu_{4} ,\,\,\mu_{5}^{*} = \frac{l}{m}\mu_{5} ,\,\,\mu_{6}^{*} = \,\frac{{l^{3} }}{{\sqrt {mD_{66} } }}\mu_{6} . \\ \end{aligned} $$
    (50)
  2. 2.

    Functions defined in Eqs. (34)–(35) are:

    $$ \begin{aligned} H_{1} & = I\beta_{\text{f}} \mu_{1} A_{1} \phi (0) + \frac{1}{4}\left[ {\left( {3\bar{A}_{1} A_{1}^{2} + 6\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\alpha_{2} + \left( {\bar{A}_{1} A_{1}^{2} + 2\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\alpha_{3} } \right. \\ & \quad + \,I\left( {\bar{A}_{1} A_{1}^{2} + 2\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\beta_{\text{f}} \mu_{2} + I\left( {2\beta_{\text{f}}^{{}} \bar{A}_{2} A_{2} A_{1}^{{}} - 4\beta_{\text{b}}^{{}} \bar{A}_{2} A_{1}^{{}} A_{2} + 3\beta_{\text{f}}^{{}} A_{1}^{2} \bar{A}_{1}^{{}} } \right)\mu_{3} \\ & \quad + \,\left( {2\beta_{\text{b}}^{2} \bar{A}_{2} A_{1}^{{}} A_{2} + 3\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{2} - 4\beta_{\text{f}}^{{}} \beta_{\text{b}}^{{}} A_{2} \bar{A}_{2} A_{1}^{{}} } \right)\mu_{4} + \left( {\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{2} + 2\beta_{\text{b}}^{2} A_{2} \bar{A}_{2} A_{1}^{{}} } \right)\mu_{5} \\ & \quad \left. { + \,I\left( {2A_{1} A_{2} \bar{A}_{2} \beta_{\text{b}} - A_{1}^{2} \bar{A}_{1} \beta_{\text{f}} } \right)\mu_{6} } \right]\phi^{3} (0), \\ H_{2} & = - I\beta_{\text{b}} \mu_{1} A_{2} \phi (0) + \frac{1}{4}\left[ {\left( {3\bar{A}_{2} A_{2}^{2} + 6\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\alpha_{2} + \left( {\bar{A}_{2} A_{2}^{2} + 2\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\alpha_{3} } \right. \\ & \quad - \,I\left( {\bar{A}_{2} A_{2}^{2} + 2\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\beta_{\text{b}} \mu_{2} - I\left( {2\beta_{\text{b}}^{{}} \bar{A}_{1} A_{2} A_{1}^{{}} - 4\beta_{f}^{{}} \bar{A}_{1} A_{1}^{{}} A_{2} + 3\beta_{\text{b}}^{{}} A_{2}^{2} \bar{A}_{2}^{{}} } \right)\mu_{3} \\ & \quad + \,\left( {2\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{{}} A_{2} + 3\beta_{\text{b}}^{2} \bar{A}_{2} A_{2}^{2} - 4\beta_{\text{b}}^{{}} \beta_{\text{f}}^{{}} A_{2} \bar{A}_{1} A_{1}^{{}} } \right)\mu_{4} + \left( {\beta_{\text{b}}^{2} \bar{A}_{2} A_{2}^{2} + 2\beta_{\text{f}}^{2} A_{2} \bar{A}_{1} A_{1}^{{}} } \right)\mu_{5} \\ & \quad \left. { - \,I\left( {2A_{1} A_{2} \bar{A}_{1} \beta_{\text{f}} - A_{2}^{2} \bar{A}_{2} \beta_{\text{b}} } \right)\mu_{6} } \right]\phi^{3} (0), \\ H_{3} & = - I\beta_{\text{f}} \mu_{1} A_{1} \phi (1) - \frac{1}{4}\left[ {\left( {3\bar{A}_{1} A_{1}^{2} + 6\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\alpha_{2} + \left( {\bar{A}_{1} A_{1}^{2} + 2\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\alpha_{3} } \right. \\ & \quad + \,I\left( {\bar{A}_{1} A_{1}^{2} + 2\bar{A}_{2} A_{1}^{{}} A_{2} } \right)\beta_{\text{f}} \mu_{2} + I\left( {2\beta_{\text{f}}^{{}} \bar{A}_{2} A_{2} A_{1}^{{}} - 4\beta_{\text{b}}^{{}} \bar{A}_{2} A_{1}^{{}} A_{2} + 3\beta_{\text{f}}^{{}} A_{1}^{2} \bar{A}_{1}^{{}} } \right)\mu_{3} \\ & \quad + \,\left( {2\beta_{\text{b}}^{2} \bar{A}_{2} A_{1}^{{}} A_{2} + 3\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{2} - 4\beta_{\text{f}}^{{}} \beta_{\text{b}}^{{}} A_{2} \bar{A}_{2} A_{1}^{{}} } \right)\mu_{4} + \left( {\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{2} + 2\beta_{\text{b}}^{2} A_{2} \bar{A}_{2} A_{1}^{{}} } \right)\mu_{5} \\ & \quad \left. { + \,I\left( {2A_{1} A_{2} \bar{A}_{2} \beta_{\text{b}} - A_{1}^{2} \bar{A}_{1} \beta_{\text{f}} } \right)\mu_{6} } \right]\phi^{3} (1), \\ H_{4} & = I\beta_{\text{b}} \mu_{1} A_{2} \phi (1) - \frac{1}{4}\left[ {\left( {3\bar{A}_{2} A_{2}^{2} + 6\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\alpha_{2} + \left( {\bar{A}_{2} A_{2}^{2} + 2\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\alpha_{3} } \right. \\ & \quad - \,I\left( {\bar{A}_{2} A_{2}^{2} + 2\bar{A}_{1} A_{1}^{{}} A_{2} } \right)\beta_{\text{b}} \mu_{2} - I\left( {2\beta_{\text{b}}^{{}} \bar{A}_{1} A_{2} A_{1}^{{}} - 4\beta_{\text{f}}^{{}} \bar{A}_{1} A_{1}^{{}} A_{2} + 3\beta_{\text{b}}^{{}} A_{2}^{2} \bar{A}_{2}^{{}} } \right)\mu_{3} \\ & \quad + \,\left( {2\beta_{\text{f}}^{2} \bar{A}_{1} A_{1}^{{}} A_{2} + 3\beta_{\text{b}}^{2} \bar{A}_{2} A_{2}^{2} - 4\beta_{\text{b}}^{{}} \beta_{\text{f}}^{{}} A_{2} \bar{A}_{1} A_{1}^{{}} } \right)\mu_{4} + \left( {\beta_{\text{b}}^{2} \bar{A}_{2} A_{2}^{2} + 2\beta_{\text{f}}^{2} A_{2} \bar{A}_{1} A_{1}^{{}} } \right)\mu_{5} \\ & \quad \left. { - \,I\left( {2A_{1} A_{2} \bar{A}_{1} \beta_{\text{f}} - A_{2}^{2} \bar{A}_{2} \beta_{\text{b}} } \right)\mu_{6} } \right]\phi^{3} (1), \\ \end{aligned} $$
    (51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yektanezhad, A., Hosseini, S.A.A., Tourajizadeh, H. et al. Vibration Analysis of Flexible Shafts with Active Magnetic Bearings. Iran J Sci Technol Trans Mech Eng 44, 403–414 (2020). https://doi.org/10.1007/s40997-018-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0263-9

Keywords

Navigation