Skip to main content
Log in

Decay Modes and Half-Life of 265–282Ds Isotopes

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

The decay modes and half-lives of superheavy 265–282Ds isotopes have been investigated by using Relativistic Mean Field (RMF) model with density-dependent point-coupling and density-dependent meson-exchange functional. The potential energy surfaces as a funtion of deformation parameters (\(\beta ,\gamma\)) for the considered Ds nuclei have been obtained by using a triaxially deformed RMF model calculations for the investigation of their ground-state shapes and binding energies. The computed ground-state binding energy values of given Ds isotopes have been used for calculations of Q values of the alpha (\(\alpha\)), beta-plus/electron capture (\(\beta ^{+}\)/EC), beta-minus (\(\beta ^{-}\)) and spontaneous fission (SF) decay modes. The dominant decay modes and half-lives of 265–282Ds isotopes have been predicted by using the computed Q-values and some empirical formulas. The results of the present study demonstrate that the 265–282Ds isotopes are well deformed, with prolate configuration in their ground-states. Our estimations for decay modes and half-lives are consistent with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abusara H, Afanasjev AV, Ring P (2012) Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei. Phys Rev C 85:024314

    Article  Google Scholar 

  • Abusara H, Ahmad S, Othman S (2017) Triaxiality softness and shape coexistence in mo and ru isotopes. Phys Rev C 95:054302

    Article  Google Scholar 

  • Akrawy DT, Poenaru DN (2017) Alpha decay calculations with a new formula. J Phys G Nucl Part Phys 44(10):105105

    Article  Google Scholar 

  • Bayram T, Akkoyun S (2013) An analysis of E(5) shape phase transitions in Cr isotopes with covariant density functional theory. Phys Scr 87(6):065201

    Article  Google Scholar 

  • Bayram T, Yılmaz AH (2013) Table of ground state properties of nuclei in the RMF model. Mod Phys Lett 28:1350068

    Article  Google Scholar 

  • Bhuyan M (2018) Probable decay modes at limits of nuclear stability of the superheavy nuclei. Phys At Nucl 81(1):15–23

    Article  MathSciNet  Google Scholar 

  • Binning G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Dev 30(4):355–369

    Google Scholar 

  • Boguta J, Bodmer A (1977) Relativistic calculation of nuclear matter and the nuclear surface. Nucl Phys A 292(3):413–428

    Article  MathSciNet  Google Scholar 

  • Chhanda S, Narayan Basu D, Chowdhury PR (2007) Quantum tunneling in \(^{277}112\) and its \(\alpha\)-decay chain. J Phys Soc Jpn 76:124201

    Article  Google Scholar 

  • Fiset E, Nix J (1972) Calculation of half-lives for superheavy nuclei. Nucl Phys A 193(2):647–671

    Article  Google Scholar 

  • Forsberg U, Rudolph D, Andersson LL et al (2016) Recoil-\(\alpha\)-fission and recoil-\(\alpha\)\(\alpha\)-fission events observed in the reaction \(^{48}\)Ca + \(^{243}\)Am. Nucl Phys A 953:117–138

    Article  Google Scholar 

  • Heenen PH, Skalski J, Staszczak A et al (2015) Shapes and \(\alpha\)- and \(\beta\)-decays of superheavy nuclei. Nucl Phys A 944:415–441

    Article  Google Scholar 

  • Ismail M, Seif W, Adel A et al (2017) Alpha-decay of deformed superheavy nuclei as a probe of shell closures. Nucl Phys A 958:202–210

    Article  Google Scholar 

  • Karpov AV, Zagrebaev VI, Martinez Palenzuela Y et al (2012) Decay properties and stability of heaviest elements. Int J Mod Phys E 21:1250013

    Article  Google Scholar 

  • Khuyagbaatar J, Albers HM, Block M et al (2020) Search for electron-capture delayed fission in the new isotope \(^{244}\rm Md\). Phys Rev Lett 125(14):142504

    Article  Google Scholar 

  • Kiren OV, Gudennavar SB, Bubbly SG (2012) Alpha decay favoured isotopes of some superheavy nuclei: spontaneous fission versus alpha decay. Rom J Phys 57:1335–1345

    Google Scholar 

  • Lalazissis GA, Raman S, Ring P (1999) Ground state properties of even-even nuclei in the relativistic mean-field theory. At Data Nucl Data Tables 71(1):1–40

    Article  Google Scholar 

  • Lalazissis GA, Nikšić T, Vretenar D et al (2005) Relativistic hartree-bogoliubov model with density-dependent meson-nucleon couplings. Phys Rev C 71:024312

    Article  Google Scholar 

  • Meng J, Toki H, Zhou S et al (2006) Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys 57(2):470–563

    Article  Google Scholar 

  • Möller P, Sierk A, Ichikawa T et al (2016) Nuclear ground-state masses and deformations: Frdm (2012). At Data Nucl Data Tables 109–110:1–204

    Article  Google Scholar 

  • Nabi JU, Bayram T, Daraz G et al (2021) The nuclear ground-state properties and stellar electron emission rates of \(^{76}\)fe, \(^{78}\)ni, \(^{80}\)zn, \(^{126}\)ru, \(^{128}\)pd and \(^{130}\)cd using rmf and pn-qrpa models. Nucl Phys A 1015:122278

    Article  Google Scholar 

  • Nikšić T, Vretenar D, Finelli P et al (2002) Relativistic hartree-bogoliubov model with density-dependent meson-nucleon couplings. Phys Rev C 66:024306

    Article  Google Scholar 

  • Nikšić T, Vretenar D, Ring P (2008) Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Phys Rev C 78:034318

    Article  Google Scholar 

  • Nikšić T, Vretenar D, Ring P (2011) Relativistic nuclear energy density functionals: mean-field and beyond. Prog Part Nucl Phys 66:519–548

    Article  Google Scholar 

  • Nikšić T, Paar N, Vretenar D et al (2014) Dirhb-a relativistic self-consistent mean-field framework for atomic nuclei. Comput Phys Commun 185(6):1808–1821

    Article  MATH  Google Scholar 

  • Nithya C, Santhosh K (2022) Studies on the decay modes of superheavy nuclei with z = 120. Nucl Phys A 1020:122400

    Article  Google Scholar 

  • NNDC (2022) National nuclear data center. http://www.nndc.bnl.gov/. Accessed on 2 Mar 2022

  • Oganessian Y (2006) Synthesis and decay properties of superheavy elements. Pure Appl Chem 78(5):889–904

    Article  Google Scholar 

  • Palenzuela Y, Ruiz L, Karpov A et al (2012) Systematic study of decay properties of heaviest elements. Bull Russ Acad Sci Phys 76:1165–1171

    Article  Google Scholar 

  • Poenaru DN, Plonski IH, Greiner W (2006) \(\alpha\)-decay half-lives of superheavy nuclei. Phys Rev C 74:014312

    Article  Google Scholar 

  • Rajan MKP, Biju RK, Santhosh KP (2016) Studies on beta decay of isotopes in the heavy region. Paper presented at the 61. DAE Symposium on nuclear physics, 5–9 Dec 2016

  • Rajan MKP, Biju RK, Santhosh KP (2020) Beta decay studies of nuclides in the heavy region. J Nucl Phys Mat Sci Radiat Appl 8(1):43–53

    Article  Google Scholar 

  • Rather AA, Ikram M, Usmani AA et al (2016) Structural and decay properties of z = 132, 138 superheavy nuclei. Eur Phys J A 52:372

    Article  Google Scholar 

  • Ren Z, Chen DH, Tai F et al (2003) Ground state properties of odd-z superheavy nuclei. Phys Rev C 67(6):064302

    Article  Google Scholar 

  • Ring P (1996) Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys 37:193–263

    Article  Google Scholar 

  • Sayedi M, Alemdar Milan S (2015) Estimation of alpha decay half lives for isotopes super heavy nuclei (even [z]-even [n]), (even-odd), (odd-even) and (odd-odd) the range atomic number z=104-118. Cumhur Sci J 36(3):1300–1949

    Google Scholar 

  • Seeger PA, Fowler WA, Clayton DD (1965) Nucleosynthesis of heavy elements by neutron capture. Astrophys J 11:121

  • Sheng Z, Shu L, Meng Y et al (2014) Competition between alpha-decay and beta-decay for Heavy and superheavy nuclei. Chin Phys C 38(12):124101

    Article  Google Scholar 

  • Soylu A (2019) Calculations of spontaneous fission (sf) half-lives of superheavy nuclei in different models. BEU J Sci 57:72–76

    Google Scholar 

  • Walecka J (1974) A theory of highly condensed matter. Ann Phys 83(2):491–529

    Article  Google Scholar 

  • Wang M, Audi G, Kondev FG et al (2017) The AME2016 atomic mass evaluation (II). tables, graphs and references. Chin Phys C 41(3):030003

    Article  Google Scholar 

  • Zhang X, Ren Z, Zhi Q et al (2007) Systematics of \(\beta ^-\)-decay half-lives of nuclei far from the \(\beta\)-stable line. J Phys G Nucl Part Phys 34(12):2611–2632

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

TB executed literature research, designed the study and edited the paper. AH performed calculations and analyzed data. ŞŞ performed calculations. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tuncay Bayram.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayram, T., Hayder, A. & Şentürk, Ş. Decay Modes and Half-Life of 265–282Ds Isotopes. Iran J Sci 47, 969–977 (2023). https://doi.org/10.1007/s40995-023-01461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-023-01461-3

Keywords

Navigation