Skip to main content
Log in

Dynamical Behaviour of an Infected Predator-Prey Model with Fear Effect

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this article, we have presented an infected predator-prey model with Holling type II functional response where the predator population is divided into two sub-classes, namely susceptible and infected due to disease. Here, we have assumed that the fear induced by susceptible and infected predators are of different levels. Well-posedness of the model system along with persistence criterion and the conditions of local stability of each equilibrium point have been established. Direction of Hopf bifurcation near the interior equilibrium point has been investigated. From model analysis, it is observed that fear induced by both susceptible and infected predators jointly determine dynamical complexity of the system. Fear induced by susceptible predators enhances the stable coexistence of the system whereas high amount of fear induced by infected predators destabilizes the system. It is also observed that the ratio of the birth rate of prey and the level of fear induced by both the susceptible and infected predators actively determine the topological behaviour of the system. We have performed comprehensive and meticulous numerical simulations to verify and validate the analytical findings of our model system, and finally, the article is ended up with a conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part i. Nature 280(5721):361

    Google Scholar 

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Philos Trans R Soc Lond B Biol Sci 291(1054):451–524

    Google Scholar 

  • Barlow N (2000) Non-linear transmission and simple models for bovine tuberculosis. J Anim Ecol 69(4):703–713

    Google Scholar 

  • Barman D, Roy J, Alam S (2020) Trade-off between fear level induced by predator and infection rate among prey species. J Appl Math Comput 64:635–663

    MathSciNet  Google Scholar 

  • Belvisi S, Venturino E (2013) An ecoepidemic model with diseased predators and prey group defense. Simul Model Pract Theory 34:144–155

    Google Scholar 

  • Bera S, Maiti A, Samanta G (2015) Modelling herd behavior of prey: analysis of a prey-predator model. World J Model Simul 11(1):3–14

    Google Scholar 

  • Capasso V, Serio G (1978) A generalization of the Kermack–McKendrick deterministic epidemic model. Math Biosci 42(1–2):43–61

    MathSciNet  MATH  Google Scholar 

  • Chakraborty K, Jana S, Kar T (2012) Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Appl Math Comput 218(18):9271–9290

    MathSciNet  MATH  Google Scholar 

  • Chattopadhyay J, Arino O (1999) A predator-prey model with disease in the prey. Nonlinear Anal 36(6):747–766

    MathSciNet  MATH  Google Scholar 

  • Chattopadhyay J, Pal S, Abdllaoui AE (2003) Classical predator-prey system with infection of prey population—a mathematical model. Math Methods Appl Sci 26(14):1211–1222

    MathSciNet  MATH  Google Scholar 

  • Chen F, Chen L, Xie X (2009) On a Leslie-Gower predator-prey model incorporating a prey refuge. Nonlinear Anal Real World Appl 10(5):2905–2908

    MathSciNet  MATH  Google Scholar 

  • Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol 27(1):56–65

    Google Scholar 

  • Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23(4):194–201

    Google Scholar 

  • Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and demography of elk. Science 315(5814):960–960

    Google Scholar 

  • Cresswell W (2011) Predation in bird populations. J Ornithol 152(1):251–263

    Google Scholar 

  • Das A, Samanta G (2018) Modeling the fear effect on a stochastic prey-predator system with additional food for the predator. J Phys A Math Theor 51(46):465601

    MathSciNet  Google Scholar 

  • Diekmann O, Kretzschmar M (1991) Patterns in the effects of infectious diseases on population growth. J Math Biol 29(6):539–570

    MathSciNet  MATH  Google Scholar 

  • Gao X, Pan Q, He M, Kang Y (2013) A predator-prey model with diseases in both prey and predator. Physica A 392(23):5898–5906

    MathSciNet  MATH  Google Scholar 

  • Haque M, Venturino E (2007) An ecoepidemiological model with disease in predator: the ratio-dependent case. Math Methods Appl Sci 30(14):1791–1809

    MathSciNet  MATH  Google Scholar 

  • Hassard BD, Hassard B, Kazarinoff ND, Wan YH, Wan YW (1981) Theory and applications of Hopf bifurcation, vol. 41. CUP Archive

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97(S45):5–60

    Google Scholar 

  • Kant S, Kumar V (2017) Stability analysis of predator-prey system with migrating prey and disease infection in both species. Appl Math Model 42:509–539

    MathSciNet  MATH  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A Containing Pap Math Phys Charact 115(772):700–721

    MATH  Google Scholar 

  • Khajanchi S (2017) Modeling the dynamics of stage-structure predator-prey system with monod-haldane type response function. Appl Math Comput 302:122–143

    MathSciNet  MATH  Google Scholar 

  • Khan Q, Balakrishnan E, Wake G (2004) Analysis of a predator-prey system with predator switching. Bull Math Biol 66(1):109–123

    MathSciNet  MATH  Google Scholar 

  • Kooi BW, Venturino E (2016) Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math Biosci 274:58–72

    MathSciNet  MATH  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Li J, Gao W (2010) Analysis of a prey-predator model with disease in prey. Appl Math Comput 217(8):4024–4035

    MathSciNet  MATH  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48(1):25–34

    Google Scholar 

  • Lima SL (2009) Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol Rev 84(3):485–513

    MathSciNet  Google Scholar 

  • Liu M, Jin Z, Haque M (2009) An impulsive predator-prey model with communicable disease in the prey species only. Nonlinear Anal Real World Appl 10(5):3098–3111

    MathSciNet  MATH  Google Scholar 

  • Liu S, Beretta E (2006) A stage-structured predator-prey model of Beddington-Deangelis type. SIAM J Appl Math 66(4):1101–1129

    MathSciNet  MATH  Google Scholar 

  • Wm Liu, Hethcote HW, Levin SA (1987) Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol 25(4):359–380

    MathSciNet  MATH  Google Scholar 

  • Wm Liu, Levin SA, Iwasa Y (1986) Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models. J Math Biol 23(2):187–204

    MathSciNet  MATH  Google Scholar 

  • Lotka A (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  • Lu Y, Li D, Liu S (2016) Modeling of hunting strategies of the predators in susceptible and infected prey. Appl Math Comput 284:268–285

    MathSciNet  MATH  Google Scholar 

  • May RM, Anderson RM (1979) Population biology of infectious diseases: part ii. Nature 280(5722):455

    Google Scholar 

  • May RM, Anderson RM (1987) Commentary transmission dynamics of HIV infection. Nature 326:137

    Google Scholar 

  • Mbava W, Mugisha J, Gonsalves JW (2017) Prey, predator and super-predator model with disease in the super-predator. Appl Math Comput 297:92–114

    MathSciNet  MATH  Google Scholar 

  • Mondal A, Pal A, Samanta G (2019) On the dynamics of evolutionary leslie-gower predator-prey eco-epidemiological model with disease in predator. Ecol Genet Genomics 10:100034

    Google Scholar 

  • Murray J (1993) Mathematical biology. Springer, New York

    MATH  Google Scholar 

  • Olsson M, Pauliny A, Wapstra E, Blomqvist D (2010) Proximate determinants of telomere length in sand lizards (Lacerta agilis). Biol Lett 6(5):651–653

    Google Scholar 

  • Pada Das K et al (2011) A mathematical study of a predator-prey dynamics with disease in predator. ISRN Appl Math 2011

  • Pal S, Majhi S, Mandal S, Pal N (2019) Role of fear in a predator-prey model with Beddington-Deangelis functional response. Zeitschrift für Naturforschung A 74(7):581–595

    Google Scholar 

  • Pal S, Pal N, Samanta S, Chattopadhyay J (2019) Effect of hunting cooperation and fear in a predator-prey model. Ecol Complex 39:100770

    Google Scholar 

  • Panday P, Pal N, Samanta S, Chattopadhyay J (2018) Stability and bifurcation analysis of a three-species food chain model with fear. Int J Bifurc Chaos 28(01):1850009

    MathSciNet  MATH  Google Scholar 

  • Panday P, Pal N, Samanta S, Chattopadhyay J (2019) A three species food chain model with fear induced trophic cascade. Int J Appl Comput Math 5(4):100

    MathSciNet  MATH  Google Scholar 

  • Peacor SD, Peckarsky BL, Trussell GC, Vonesh JR (2013) Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey. Oecologia 171(1):1–10

    Google Scholar 

  • Pettorelli N, Coulson T, Durant SM, Gaillard JM (2011) Predation, individual variability and vertebrate population dynamics. Oecologia 167(2):305

    Google Scholar 

  • Pielou E (1977) Mathematical ecology. Wiley, New York

    MATH  Google Scholar 

  • Preisser EL, Bolnick DI (2008) The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE 3(6):e2465

    Google Scholar 

  • Roberts M (1996) The dynamics of bovine tuberculosis in possum populations, and its eradication or control by culling or vaccination. J Anim Ecol 451–464

  • Roy J, Alam S (2020) Fear factor in a prey-predator system in deterministic and stochastic environment. Physica A 541:123359

    MathSciNet  Google Scholar 

  • Roy J, Barman D, Alam S (2020) Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 104176

  • Sahoo B, Poria S (2014) Diseased prey predator model with general holling type interactions. Appl Math Comput 226:83–100

    MathSciNet  MATH  Google Scholar 

  • Sasmal SK (2018) Population dynamics with multiple allee effects induced by fear factors-a mathematical study on prey-predator interactions. Appl Math Model 64:1–14

    MathSciNet  MATH  Google Scholar 

  • Sha A, Samanta S, Martcheva M, Chattopadhyay J (2019) Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J Biol Dyn 13(1):301–327

    MathSciNet  MATH  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2009) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78(6):1249–1258

    Google Scholar 

  • Svennungsen TO, Holen ØH, Leimar O (2011) Inducible defenses: continuous reaction norms or threshold traits? Am Nat 178(3):397–410

    Google Scholar 

  • Travers M, Clinchy M, Zanette L, Boonstra R, Williams TD (2010) Indirect predator effects on clutch size and the cost of egg production. Ecol Lett 13(8):980–988

    Google Scholar 

  • Venturino E (1994) The influence of disease on Lotka-Volterra system. Rocky Mt J Math

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically

  • Wang X, Zanette L, Zou X (2016) Modelling the fear effect in predator-prey interactions. J Math Biol 73(5):1179–1204

    MathSciNet  MATH  Google Scholar 

  • Wang X, Zou X (2017) Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull Math Biol 79(6):1325–1359

    MathSciNet  MATH  Google Scholar 

  • Wörz-Busekros A (1978) Global stability in ecological systems with continuous time delay. SIAM J Appl Math 35(1):123–134

    MathSciNet  MATH  Google Scholar 

  • Xiao D, Ruan S (2007) Global analysis of an epidemic model with nonmonotone incidence rate. Math Biosci 208(2):419–429

    MathSciNet  MATH  Google Scholar 

  • Xiao Y, Chen L (2001) Modeling and analysis of a predator-prey model with disease in the prey. Math Biosci 171(1):59–82

    MathSciNet  MATH  Google Scholar 

  • Yorke JA, London WP (1973) Recurrent outbreaks of measles, chickenpox and mumps: Ii. Systematic differences in contact rates and stochastic effects. Am J Epidemiol 98(6):469–482

    Google Scholar 

  • Zanette LY, White AF, Allen MC, Clinchy M (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061):1398–1401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipesh Barman.

Appendix

Appendix

\(A_1\): The detailed calculation of Permanence of Sect. 3.3 The supremum value \(Q_1,Q_2,Q_3\), according to Standard Comparison theorem, can be obtained as a positive solutions of the following system of equations

$$\begin{aligned}&x\left( r-d_1-\frac{c_2z}{b_1+x}\right) =0, \end{aligned}$$
(7.1)
$$\begin{aligned}&\quad y\left( \frac{c_3x}{b_1}-d_2\right) =0, \end{aligned}$$
(7.2)
$$\begin{aligned}&\quad z\left( \frac{c_4x}{b_1}+ay-d_3\right) =0. \end{aligned}$$
(7.3)

Solving the above system of equations, we get \(x=\frac{b_1d_2}{c_3}=Q_1,~ y=\frac{c_3d_3-c_4d_2}{ac_3}=Q_2,~ z=\frac{b_1(c_3+d_2)(r-d_1)}{c_2c_3}=Q_3.\) Interestingly, inequalities (3.4), (3.5), (3.6) can be written in the following form

$$\begin{aligned}&\frac{\text {d}x}{\text {d}t}\ge x\left( \frac{r}{1+k_1Q_2+k_2Q_3}-mx-d_1-\frac{(c_1Q_2+c_2Q_3)}{b_1}\right) , \end{aligned}$$
(7.4)
$$\begin{aligned}&\quad \frac{\text {d}y}{\text {d}t}\ge y\left( \frac{c_3x}{b_1+Q_1}-az-d_2\right) , \end{aligned}$$
(7.5)
$$\begin{aligned}&\quad \frac{\text {d}z}{\text {d}t}\ge z\left( \frac{ay}{1+bQ_3}-d_3\right) . \end{aligned}$$
(7.6)

Similarly, we get \(x=\frac{s_1}{s_2}=q_1, y=\frac{d_3\{c_2c_3+bb_1(c_3+d_2)(r-d_1)\}}{ac_2c_3}=q_2, ~z=\frac{c_3^2s_1-b_1d_2s_2(c_3+d_2)}{b_1s_2(c_3+d_2)}=q_3,\) and \(s_1=a^2c_2c_3^2b_1r-\{ac_2c_3+k_1c_2(c_3d_3-c_4d_2)+ab_1k_2(c_3+d_2)(r-d_1)\}\{ab_1c_3d_1+c_1(c_3d_3-c_4d_2)+ab_1(c_3+d_2)(r-d_1)\}\), \(s_2=mab_1c_3\{ac_2c_3+k_1c_2(c_3d_3-c_4d_2)+ab_1k_2(c_3+d_2)(r-d_1)\}\). Now, \(Q_1\) is always positive, \(Q_2>0 ~\mathrm {if}~ c_3d_3>c_4d_2\), \(Q_3, q_2>0\) as \(r>d_1\) and \(q_3\) will be positive if \(\frac{s_1}{s_2}>\frac{b_1d_2(c_3+d_2)}{c_3^2}\) which consequently satisfies the positivity of \(q_1\).

\(A_2\):The detailed calculation of direction and stability of Hopf bifurcation of Sect. 5.2

$$\begin{aligned} g_{11}&= \frac{1}{4}\left[ \left( \frac{\partial ^2 H_1}{\partial x_1^2}+\frac{\partial ^2 H_2}{\partial y_1^2}\right) +i\left( \frac{\partial ^2 H_2}{\partial x_1^2}+\frac{\partial ^2 H_1}{\partial y_1^2}\right) \right] \\&=\frac{1}{4N}\big [\left\{ {Q_1}_{x_1 x_1}p_{22}-{Q_2}_{x_1 x_1}p_{12}+u_1{Q_3}_{x_1 x_1}+u_5{Q_1}_{y_1 y_1}-u_6{Q_2}_{y_1 y_1}+u_2{Q_3}_{y_1 y_1} \right\} \\&\quad +i\big \{u_5{Q_1}_{x_1 x_1}-u_6{Q_2}_{x_1 x_1}+u_2{Q_3}_{x_1 x_1}\\&\quad +p_{22}{Q_1}_{y_1 y_1}-p_{12}{Q_2}_{y_1 y_1}+u_4{Q_3}_{y_1 y_1}\big \}\big ],\\ g_{02}&=\frac{1}{4}\left[ \left( \frac{\partial ^2 H_1}{\partial x_1^2}\right. \right. \\&\left. \left. \quad -\frac{\partial ^2 H_1}{\partial y_1^2}-2\frac{\partial ^2 H_2}{\partial x_1\partial y_1}\right) +i\left( \frac{\partial ^2 H_2}{\partial x_1^2}-\frac{\partial ^2 H_2}{\partial y_1^2}+2\frac{\partial ^2 H_1}{\partial x_1\partial y_1}\right) \right] \\&=\frac{1}{4N}\big [\left\{ {Q_1}_{x_1 x_1}p_{22}-{Q_2}_{x_1 x_1}p_{12}\right. \\&\left. \quad +u_1{Q_3}_{x_1 x_1}-({Q_1}_{y_1 y_1}p_{22}-{Q_2}_{y_1 y_1}p_{12}\right. \\&\left. \quad +u_1{Q_3}_{y_1 y_1})-2(u_5{Q_1}_{x_1 y_1}-u_6{Q_2}_{x_1 y_1}+u_2{Q_3}_{x_1 y_1}) \right\} \\&\quad +i\big \{u_5{Q_1}_{x_1 x_1-u_6{Q_2}_{x_1 x_1}+u_2{Q_3}_{x_1 x_1}-(u_5{Q_1}_{y_1 y_1}-u_6{Q_2}_{y_1 y_1}+u_2{Q_3}_{y_1 y_1}) +2({Q_1}_{x_1 y_1}p_{22}-{Q_2}_{x_1 y_1}p_{12}+u_4{Q_3}_{x_1 y_1})}\big \}\big ],\\ g_{20}&=\frac{1}{4}\left[ \left( \frac{\partial ^2 H_1}{\partial x_1^2}-\frac{\partial ^2 H_1}{\partial y_1^2}+2\frac{\partial ^2 H_2}{\partial x_1\partial y_1}\right) +i\left( \frac{\partial ^2 H_2}{\partial x_1^2}-\frac{\partial ^2 H_2}{\partial y_1^2}-2\frac{\partial ^2 H_1}{\partial x_1\partial y_1}\right) \right] \\&= \frac{1}{4N}\big [\left\{ {Q_1}_{x_1 x_1}p_{22}-{Q_2}_{x_1 x_1}p_{12}\right. \\&\left. \quad +u_1{Q_3}_{x_1 x_1}-({Q_1}_{y_1 y_1}p_{22}-{Q_2}_{y_1 y_1}p_{12}+u_1{Q_3}_{y_1 y_1})+2(u_5{Q_1}_{x_1 y_1}-u_6{Q_2}_{x_1 y_1}+u_2{Q_3}_{x_1 y_1}) \right\} \\&\quad +i\big \{u_5{Q_1}_{x_1 x_1-u_6{Q_2}_{x_1 x_1}+u_2{Q_3}_{x_1 x_1}-(u_5{Q_1}_{y_1 y_1}-u_6{Q_2}_{y_1 y_1}+u_2{Q_3}_{y_1 y_1}) -2({Q_1}_{x_1 y_1}p_{22}-{Q_2}_{x_1 y_1}p_{12}+u_4{Q_3}_{x_1 y_1})}\big \}\big ],\\ G_{21}&=\frac{1}{8}\left[ \left( \frac{\partial ^3 H_1}{\partial x_1^3}+\frac{\partial ^3 H_1}{\partial x_1\partial y_1^2}+\frac{\partial ^3 H_2}{\partial x_1^2\partial y_1}+\frac{\partial ^3 H_2}{\partial y_1^3}\right) +i\left( \frac{\partial ^3 H_2}{\partial x_1^3}+\frac{\partial ^3 H_2}{\partial x_1\partial y_1^2}-\frac{\partial ^3 H_1}{\partial x_1^2\partial y_1}-\frac{\partial ^3 H_1}{\partial y_1^3}\right) \right] \\&= \frac{1}{8N}\big [\big \{({Q_1}_{x_1 x_1 x_1}p_{22}-{Q_2}_{x_1 x_1 x_1}p_{12}\\&\quad +u_1{Q_3}_{x_1 x_1 x_1})+({Q_1}_{x_1 y_1 y_1}p_{22}-{Q_2}_{x_1 y_1 y_1}p_{12}+u_1{Q_3}_{x_1 y_1 y_1})+(u_5{Q_1}_{x_1 x_1 y_1}-u_6{Q_2}_{x_1 x_1 y_1}\\&\quad +u_2{Q_3}_{x_1 x_1 y_1})+(u_5{Q_1}_{y_1 y_1 y_1}-u_6{Q_2}_{y_1 y_1 y_1}\\&\quad +u_2{Q_3}_{y_1 y_1 y_1}) \big \} +i\big \{u_5{Q_1}_{x_1 x_1 x_1}-u_6{Q_2}_{x_1 x_1 x_1}+u_2{Q_3}_{x_1 x_1 x_1}+(u_5{Q_1}_{x_1 y_1 y_1}-u_6{Q_2}_{x_1 y_1 y_1}\\&\quad +u_2{Q_3}_{x_1 y_1 y_1})-({Q_1}_{x_1 x_1 y_1}p_{22}-{Q_2}_{x_1 x_1 y_1}p_{12}+u_1{Q_3}_{x_1 x_1 y_1})- ({Q_1}_{y_1 y_1 y_1}p_{22}-{Q_2}_{y_1 y_1 y_1}p_{12}+u_1{Q_3}_{y_1 y_1 y_1}) \big \}\big ], \\ \omega&=-\frac{\partial H_1}{\partial y_1}=-\frac{1}{N}[{Q_1}_{y_1}p_{22}-{Q_2}_{y_1}p_{12}+u_1{Q_3}_{y_1}], \\ h_{11}&=\frac{1}{4}\left[ \left( \frac{\partial ^2 H_3}{\partial x_1^2}+\frac{\partial ^2 H_3}{\partial y_1^2}\right) \right] \\&=\frac{1}{4N}[(-{Q_1}_{x_1 x_1}p_{22}+{Q_2}_{x_1 x_1}p_{12}\\&\quad +u_3{Q_3}_{x_1 x_1})+(-{Q_1}_{y_1 y_1}p_{22}+{Q_2}_{y_1 y_1}p_{12}+u_3{Q_3}_{y_1 y_1})],\\ h_{20}&=\frac{1}{4}\left[ \left( \frac{\partial ^2 H_3}{\partial x_1^2}-\frac{\partial ^2 H_3}{\partial y_1^2}-2i\frac{\partial ^2 H_3}{\partial x_1 \partial y_1}\right) \right] \\&=\frac{1}{4N}[(-{Q_1}_{x_1 x_1}p_{22}+{Q_2}_{x_1 x_1}p_{12}\\&\quad +u_3{Q_3}_{x_1 x_1})+(-{Q_1}_{y_1 y_1}p_{22}+{Q_2}_{y_1 y_1}p_{12}+u_3{Q_3}_{y_1 y_1})-2i(-{Q_1}_{x_1 y_1}p_{22}+-{Q_2}_{x_1 y_1}p_{12}\\&\quad +u_3{Q_3}_{x_1 y_1})],\\ M_5&= \frac{\partial H_3}{\partial z_1}=-{Q_1}_{z_1}p_{22}+{Q_2}_{z_1}p_{22}+u_3{Q_3}_{z_1}. \end{aligned}$$

To find the value of \(\omega _{11}\) and \(\omega _{20}\), we have to solve,

$$\begin{aligned} M_5 \omega _{11} =-h_{11},~ (N-2i\omega )\omega _{20}=-h_{20}, \end{aligned}$$

Additionally,

$$\begin{aligned} G_{110}&= \frac{1}{2}\left[ \left( \frac{\partial ^2 H_1}{\partial x_1 \partial z_1}+\frac{\partial ^2 H_2}{\partial y_1 \partial z_1}\right) \right. \\&\left. \quad +i\left( \frac{\partial ^2 H_2}{\partial x_1 \partial z_1}-\frac{\partial ^2 H_1}{\partial y_1 \partial z_1}\right) \right] , \\&= \big [ \big \{{Q_1}_{x_1 z_1}p_{22}-{Q_2}_{x_1 z_1}p_{12}+u_1{Q_3}_{x_1 z_1}\\&\quad +u_5{Q_1}_{y_1 z_1}-u_6{Q_2}_{y_1 z_1}+u_2{Q_3}_{y_1 z_1} \big \}+i\big \{(u_5{Q_1}_{x_1 z_1}-u_6{Q_2}_{x_1 z_1}+u_2{Q_3}_{x_1 z_1})-({Q_1}_{y_1 z_1}p_{22}\\&\quad -{Q_2}_{y_1 z_1}p_{12}+u_4{Q_3}_{y_1 z_1}) \big \} \big ],\\ G_{101}&= \frac{1}{2}\left[ \left( \frac{\partial ^2 H_1}{\partial x_1 \partial z_1}-\frac{\partial ^2 H_2}{\partial y_1 \partial z_1}\right) +i\left( \frac{\partial ^2 H_2}{\partial x_1 \partial z_1}+\frac{\partial ^2 H_1}{\partial y_1 \partial z_1}\right) \right] , \\&= \big [ \big \{{Q_1}_{x_1 z_1}p_{22}-{Q_2}_{x_1 z_1}p_{12}+u_1{Q_3}_{x_1 z_1}\\&\quad -(u_5{Q_1}_{y_1 z_1}-u_6{Q_2}_{y_1 z_1}+u_2{Q_3}_{y_1 z_1}) \big \}+i\big \{(u_5{Q_1}_{x_1 z_1}-u_6{Q_2}_{x_1 z_1}+u_2{Q_3}_{x_1 z_1})\\&\quad +({Q_1}_{y_1 z_1}p_{22}-{Q_2}_{y_1 z_1}p_{12}+u_4{Q_3}_{y_1 z_1}) \big \} \big ],\\ g_{21}&= G_{21}+2G_{110}\omega _{11}+G_{101}\omega _{20}. \end{aligned}$$

where \(u_1=p_{12}p_{23}-p_{13}p_{22},~u_2=p_{21}p_{13}-p_{11}p_{23},~u_3=p_{11}p_{22}-p_{12}p_{21},~u_4=p_{12}p_{23}-p_{13}p_{23},~u_5=p_{23}-p_{21},~u_6=p_{13}-p_{11},~u_7=p_{22}-p_{21}.\) Now, let us consider \(g_1=1+k_1y^*+k_2z^*,~g_2=b_1+x^*,~g_3=1+bz^*,~g_4=k_1p_{21}+k_2p_{31},~g_5=k_1p_{22}+k_2p_{32},~g_6=k_1p_{23}+k_2p_{33}\) so that \({Q_1}_{x_1 x_1}=\frac{2rg_4(g_4x^*-g_1p_{11})}{g_1^3}-2mp_{11}^2+\frac{2p_{11}p_{21}c_1(x^*-g_2)}{g_2^2}+\frac{2b_1p_{11}^2c_1y^*}{g_2^3}\). Similarly, the other expressions related with the terms \(g_{11},~g_{02},~g_{20},~G_{21},~\omega ,~h_{11},~h_{20},~M_5,~G_{110},~G_{101},~g_{21}\) can be obtained from the partial derivative of \(Q_i,~i=1,2,3\) w.r.t. \(x_1,y_1,z_1\) at the interior equilibrium point \(E^*(x^*,y^*,z^*)\) (for details see Hassard et al. 1981; Khajanchi 2017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, D., Roy, J. & Alam, S. Dynamical Behaviour of an Infected Predator-Prey Model with Fear Effect. Iran J Sci Technol Trans Sci 45, 309–325 (2021). https://doi.org/10.1007/s40995-020-01014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-01014-y

Keywords

Navigation