Skip to main content

Advertisement

Log in

Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Gyroid structures exhibiting interconnected porosity and mean curvature of zero have the closest resemblance to native bone. Interconnected Ti6Al4V pores of different sizes such as 250, 300, 350 and 400 µm were designed and fabricated using selective laser melting (SLM). The fabricated samples were analysed for microstructure using Scaning electron microscopy and phases using X-ray Diffraction. The prevailing trend of decrease in compressive strength with increase in pore size was observed during compression tests; among all the pore sizes, 250 µm pore size showed an excellent compressive strength of 205 MPa. The biocompatibility of such porous structures for bone tissue engineering was evaluated using Human mesenchymal stem cells (hMSCs) through Alamar Blue® assay and visualization of cytoplasm and nucleus using fluorescence microscopy. Gyroid scaffold with pore size 350 and 400 µm displayed the highest biocompatibility; however, 250 µm pore size demonstrated an optimum combination of overall mechanical and biological properties viable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  2. Ran Q, Yang W, Hu Y, Shen X, Yu Y, Xiang Y et al (2018) Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 84:1–11. https://doi.org/10.1016/j.jmbbm.2018.04.010

    Article  Google Scholar 

  3. Singh N, Hameed P, Ummethala R, Manivasagam G, Prashanth KG, Eckert J (2020) Selective laser manufacturing of Ti-based alloys and composites: impact of process parameters, application trends, and future prospects. Mater Today Adv 8:100097. https://doi.org/10.1016/j.mtadv.2020.100097

    Article  Google Scholar 

  4. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111. https://doi.org/10.1016/j.pmatsci.2017.08.003

    Article  Google Scholar 

  5. Prashanth K, Löber L, Klauss H-J, Kühn U, Eckert J (2016) Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies 4:34. https://doi.org/10.3390/technologies4040034

    Article  Google Scholar 

  6. Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:319–338. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i4.50

    Article  Google Scholar 

  7. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA et al (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820. https://doi.org/10.1016/j.biomaterials.2007.02.020

    Article  Google Scholar 

  8. Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM (2010) Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 6:1640–1648. https://doi.org/10.1016/j.actbio.2009.11.011

    Article  Google Scholar 

  9. Li X, Feng YF, Wang CT, Li GC, Lei W, Zhang ZY et al (2012) Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. PLoS ONE. https://doi.org/10.1371/journal.pone.0052049

    Article  Google Scholar 

  10. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  Google Scholar 

  11. Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP (2012) Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng - Part A 18:1376–1388. https://doi.org/10.1089/ten.tea.2011.0076

    Article  Google Scholar 

  12. Bobbert FSL, Zadpoor AA (2017) Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B 5:6175–6192. https://doi.org/10.1039/c7tb00741h

    Article  Google Scholar 

  13. Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S et al (2015) Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J Mater Sci Technol 31:1001–1005. https://doi.org/10.1016/j.jmst.2015.08.007

    Article  Google Scholar 

  14. Attar H, Löber L, Funk A, Calin M, Zhang LC, Prashanth KG et al (2015) Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater Sci Eng A 625:350–356. https://doi.org/10.1016/j.msea.2014.12.036

    Article  Google Scholar 

  15. Ummethala R, Karamched PS, Rathinavelu S, Singh N, Aggarwal A, Sun K et al (2020) Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy. Materialia. https://doi.org/10.1016/j.mtla.2020.100941

    Article  Google Scholar 

  16. Maity T, Balcı GC, Ivanov E, Eckert J, Prashanth KG (2020) High pressure torsion induced lowering of Young’s modulus in high strength TNZT alloy for bio-implant applications. J Mech Behav Biomed Mater 108:103839. https://doi.org/10.1016/j.jmbbm.2020.103839

    Article  Google Scholar 

  17. Ali D, Sen S (2018) Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput Biol Med 99:201–208. https://doi.org/10.1016/j.compbiomed.2018.06.017

    Article  Google Scholar 

  18. Declercq HA, Desmet T, Dubruel P, Cornelissen MJ (2014) The role of scaffold architecture and composition on the bone formation by adipose-derived stem cells. Tissue Eng - Part A 20:434–444. https://doi.org/10.1089/ten.tea.2013.0179

    Article  Google Scholar 

  19. Li G, Wang L, Pan W, Yang F, Jiang W, Wu X et al (2016) In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. https://doi.org/10.1038/srep34072

    Article  Google Scholar 

  20. Yang E, Leary M, Lozanovski B, Downing D, Mazur M, Sarker A et al (2019) Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: a numerical study. Mater Des 184:108165. https://doi.org/10.1016/j.matdes.2019.108165

    Article  Google Scholar 

  21. Downing D, Jones A, Brandt M, Leary M (2020) Increased efficiency Gyroid structures by tailored material distribution. Mater Des. https://doi.org/10.1016/j.matdes.2020.109096

    Article  Google Scholar 

  22. Yánez A, Cuadrado A, Martel O, Afonso H, Monopoli D (2018) Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction. Mater Des 140:21–29. https://doi.org/10.1016/j.matdes.2017.11.050

    Article  Google Scholar 

  23. Speirs M, Van Hooreweder B, Van Humbeeck J, Kruth JP (2017) Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater 70:53–59. https://doi.org/10.1016/j.jmbbm.2017.01.016

    Article  Google Scholar 

  24. Zaharin HA, Rani AMA, Azam FI, Ginta TL, Sallih N, Ahmad A et al (2018) Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials (Basel). https://doi.org/10.3390/ma11122402

    Article  Google Scholar 

  25. Yan C, Hao L, Hussein A, Young P (2015) Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater 51:61–73. https://doi.org/10.1016/j.jmbbm.2015.06.024

    Article  Google Scholar 

  26. Maconachie T, Tino R, Lozanovski B, Watson M, Jones A, Pandelidi C et al (2020) The compressive behaviour of ABS gyroid lattice structures manufactured by fused deposition modelling. Int J Adv Manuf Technol 107:4449–4467. https://doi.org/10.1007/s00170-020-05239-4

    Article  Google Scholar 

  27. Muna N, Patterson AE. Simple 3-D Visualization of Some Common Mathematical Minimal Surfaces using MATLAB. 2018.

  28. Prashanth KG, Scudino S, Maity T, Das J, Eckert J (2017) Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett 5:386–390. https://doi.org/10.1080/21663831.2017.1299808

    Article  Google Scholar 

  29. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH et al (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A–p21 by HIF-TWIST. Blood 117:459–469. https://doi.org/10.1182/blood-2010-05-287508

    Article  Google Scholar 

  30. Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A Phys Metall Mater Sci 39:2914–2922. https://doi.org/10.1007/s11661-008-9634-y

    Article  Google Scholar 

  31. Attar H, Prashanth KG, Chaubey AK, Calin M, Zhang LC, Scudino S et al (2015) Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett 142:38–41. https://doi.org/10.1016/j.matlet.2014.11.156

    Article  Google Scholar 

  32. Sallica-Leva E, Jardini AL, Fogagnolo JB (2013) Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J Mech Behav Biomed Mater 26:98–108. https://doi.org/10.1016/j.jmbbm.2013.05.011

    Article  Google Scholar 

  33. Jung HY, Choi SJ, Prashanth KG, Stoica M, Scudino S, Yi S et al (2015) Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Mater Des 86:703–708. https://doi.org/10.1016/j.matdes.2015.07.145

    Article  Google Scholar 

  34. Wang Z, Ummethala R, Singh N, Tang S, Suryanarayana C, Eckert J et al (2020) Selective Laser Melting of Aluminum and Its Alloys. Materials (Basel) 13:4564. https://doi.org/10.3390/ma13204564

    Article  Google Scholar 

  35. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: A review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  36. Zhao X, Li S, Zhang M, Liu Y, Sercombe TB, Wang S et al (2016) Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting. Mater Des 95:21–31. https://doi.org/10.1016/j.matdes.2015.12.135

    Article  Google Scholar 

  37. R A, Das M, Balla VK, D D, Sen D, Manivasagam G (2019) Surface engineering of LENS-Ti-6Al-4V to obtain nano- and micro-surface topography for orthopedic application. Nanomed Nanotechnol Biol Med 18:157–168. https://doi.org/10.1016/j.nano.2019.02.010

    Article  Google Scholar 

  38. Prashanth KG, Damodaram R, Maity T, Wang P, Eckert J (2017) Friction welding of selective laser melted Ti6Al4V parts. Mater Sci Eng A 704:66–71. https://doi.org/10.1016/j.msea.2017.08.004

    Article  Google Scholar 

  39. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/J.PMATSCI.2008.06.004

    Article  Google Scholar 

  40. Wang Z, Xie M, Li Y, Zhang W, Yang C, Kollo L et al (2020) Premature failure of an additively manufactured material. NPG Asia Mater 12:1–10. https://doi.org/10.1038/s41427-020-0212-0

    Article  Google Scholar 

  41. Yamashita D, Machigashira M, Miyamoto M, Takeuchi H, Noguchi K, Izumi Y et al (2009) Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 28:461–470. https://doi.org/10.4012/dmj.28.461

    Article  Google Scholar 

  42. Li L, Crosby K, Sawicki M (2012) Effects of surface roughness of hydroxyapatite on cell attachment and proliferation. J Biotechnol Biomater 02:1–6. https://doi.org/10.4172/2155-952x.1000150

    Article  Google Scholar 

  43. Rhalmi S, Charette S, Assad M, Coillard C, Rivard CH (2007) The spinal cord dura mater reaction to nitinol and titanium alloy particles: a 1-year study in rabbits. Eur Spine J 16:1063–1072. https://doi.org/10.1007/s00586-007-0329-7

    Article  Google Scholar 

  44. Cunningham BW, Orbegoso CM, Dmitriev AE, Hallab NJ, Sefter JC, McAfee PC (2002) The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: An In vivo rabbit model. Spine 27:1971–1981. https://doi.org/10.1097/00007632-200209150-00004

    Article  Google Scholar 

  45. Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528:7423–7431. https://doi.org/10.1016/j.msea.2011.06.045

    Article  Google Scholar 

  46. Pal S, Kokol V, Gubeljak N, Hadzistevic M, Hudak R, Drstvensek I. (2019) Dimensional errors in selective laser melting products related to different orientations and processing parameters. Mater Tehnol. 53(4):551–558. https://doi.org/10.17222/mit.2018.156.

  47. Mullen L, Stamp RC, Brooks WK, Jones E, Sutcliffe CJ (2009) Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res-Part B Appl Biomater 89:325–334. https://doi.org/10.1002/jbm.b.31219

    Article  Google Scholar 

  48. Torres Y, Sarria P, Gotor FJ, Gutiérrez E, Peon E, Beltrán AM et al (2018) Surface modification of Ti-6Al-4V alloys manufactured by selective laser melting: microstructural and tribo-mechanical characterization. Surf Coatings Technol 348:31–40. https://doi.org/10.1016/j.surfcoat.2018.05.015

    Article  Google Scholar 

  49. Qin PT, Damodaram R, Maity T, Zhang WW, Yang C, Wang Z et al (2019) Friction welding of electron beam melted Ti-6Al-4V. Mater Sci Eng A 761:138045. https://doi.org/10.1016/j.msea.2019.138045

    Article  Google Scholar 

  50. Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2017) Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng A 685:417–428. https://doi.org/10.1016/j.msea.2017.01.019

    Article  Google Scholar 

  51. Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzydłowski KJ, Świeszkowski W (2017) Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci. https://doi.org/10.3390/app7070657

    Article  Google Scholar 

  52. Hao YL, Li SJ, Yang R (2016) Biomedical titanium alloys and their additive manufacturing. Rare Met 35:661–671. https://doi.org/10.1007/s12598-016-0793-5

    Article  Google Scholar 

  53. Yan C, Hao L, Hussein A, Young P, Raymont D (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541. https://doi.org/10.1016/j.matdes.2013.10.027

    Article  Google Scholar 

  54. Liu YJ, Li SJ, Wang HL, Hou WT, Hao YL, Yang R et al (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113:56–67. https://doi.org/10.1016/j.actamat.2016.04.029

    Article  Google Scholar 

  55. Liu YJ, Wang HL, Li SJ, Wang SG, Wang WJ, Hou WT et al (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater 126:58–66. https://doi.org/10.1016/j.actamat.2016.12.052

    Article  Google Scholar 

  56. du Plessis A, Razavi SMJ, Berto F (2020) The effects of microporosity in struts of gyroid lattice structures produced by laser powder bed fusion. Mater Des 194:108899. https://doi.org/10.1016/j.matdes.2020.108899

    Article  Google Scholar 

  57. Yu G, Li Z, Li S, Zhang Q, Hua Y, Liu H et al (2020) The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability. Mater Des 192:108754. https://doi.org/10.1016/j.matdes.2020.108754

    Article  Google Scholar 

  58. Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Y (2020) The design of Ti6Al4V Primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Mater Des 193:108830. https://doi.org/10.1016/j.matdes.2020.108830

    Article  Google Scholar 

  59. Olivares AL, Marsal È, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149. https://doi.org/10.1016/j.biomaterials.2009.07.041

    Article  Google Scholar 

  60. Xiong Y, Wang W, Gao R, Zhang H, Dong L, Qin J et al (2020) Fatigue behavior and osseointegration of porous Ti-6Al-4 V scaffolds with dense core for dental application. Mater Des. https://doi.org/10.1016/j.matdes.2020.108994

    Article  Google Scholar 

  61. Vijayavenkataraman S, Kuan LY, Lu WF (2020) 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Mater Des 191:108602. https://doi.org/10.1016/j.matdes.2020.108602

    Article  Google Scholar 

  62. Yang F, Chen C, Zhou Q, Gong Y, Li R, Li C et al (2017) Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: Fabrication, biocompatibility analysis and photoelastic study. Sci Rep 7:1–12. https://doi.org/10.1038/srep45360

    Article  Google Scholar 

  63. Li G, Wang L, Pan W, Yang F, Jiang W, Wu X et al (2016) In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 6:34072. https://doi.org/10.1038/srep34072

    Article  Google Scholar 

  64. Li L, Shi J, Zhang K, Yang L, Yu F, Zhu L et al (2019) Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Transl. https://doi.org/10.1016/j.jot.2019.03.003

    Article  Google Scholar 

  65. Lopez-Heredia MA, Goyenvalle E, Aguado E, Pilet P, Leroux C, Dorget M et al (2008) Bone growth in rapid prototyped porous titanium implants. J Biomed Mater Res - Part A 85:664–673. https://doi.org/10.1002/jbm.a.31468

    Article  Google Scholar 

  66. Chen SY, Huang JC, Pan CT, Lin CH, Yang TL, Huang YS et al (2017) Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting. J Alloys Compd 713:248–254. https://doi.org/10.1016/j.jallcom.2017.04.190

    Article  Google Scholar 

  67. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y (2019) Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater Des. https://doi.org/10.1016/j.matdes.2019.107643

    Article  Google Scholar 

  68. Van Der Stok J, Wang H, Amin Yavari S, Siebelt M, Sandker M, Waarsing JH et al (2013) Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time-and dose-controlled delivery of dual growth factors. Tissue Eng - Part A 19:2605–2614. https://doi.org/10.1089/ten.tea.2013.0181

    Article  Google Scholar 

  69. Wang H, Zhao B, Liu C, Wang C, Tan X, Hu M (2016) a comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting. PLoS ONE 11:e0158513. https://doi.org/10.1371/journal.pone.0158513

    Article  Google Scholar 

  70. Fousová M, Vojtěch D, Kubásek J, Jablonská E, Fojt J (2017) Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J Mech Behav Biomed Mater 69:368–376. https://doi.org/10.1016/j.jmbbm.2017.01.043

    Article  Google Scholar 

  71. Chen C, Hao Y, Bai X, Ni J, Chung SM, Liu F et al (2019) 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model. Mater Des 175:107824. https://doi.org/10.1016/j.matdes.2019.107824

    Article  Google Scholar 

  72. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T et al (2015) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Elsevier. https://doi.org/10.1016/j.msec.2015.10.069

    Article  Google Scholar 

  73. Liu J, Jin F, Zheng ML, Wang S, Fan SQ, Li P et al (2019) Cell behavior on 3D Ti-6Al-4 v scaffolds with different porosities. ACS Appl Bio Mater 2:697–703. https://doi.org/10.1021/acsabm.8b00550

    Article  Google Scholar 

  74. Ataee A, Li Y, Wen C (2019) A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomater 97:587–596. https://doi.org/10.1016/j.actbio.2019.08.008

    Article  Google Scholar 

  75. Ataee A, Li Y, Brandt M, Wen C (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater 158:354–368. https://doi.org/10.1016/j.actamat.2018.08.005

    Article  Google Scholar 

  76. Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials (Basel) 5:1336–1347. https://doi.org/10.3390/ma5081336

    Article  Google Scholar 

  77. Cheong VS, Fromme P, Coathup MJ, Mumith A, Blunn GW (2020) Partial bone formation in additive manufactured porous implants reduces predicted stress and danger of fatigue failure. Ann Biomed Eng 48:502–514. https://doi.org/10.1007/s10439-019-02369-z

    Article  Google Scholar 

  78. Lv J, Jia Z, Li J, Wang Y, Yang J, Xiu P et al (2015) Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis. Adv Eng Mater 17:1391–1398. https://doi.org/10.1002/adem.201400508

    Article  Google Scholar 

  79. Li Y, Ding Y, Munir K, Lin J, Brandt M, Atrens A et al (2019) Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomater 87:273–284. https://doi.org/10.1016/j.actbio.2019.01.051

    Article  Google Scholar 

  80. Luo JP, Sun JF, Huang YJ, Zhang JH, Zhao DP, Yan M et al (2019) Low-modulus biomedical Ti–30Nb–5Ta–3Zr additively manufactured by Selective Laser Melting and its biocompatibility. Mater Sci Eng C 97:275–284. https://doi.org/10.1016/j.msec.2018.11.077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geetha Manivasagam or Konda Gokuldoss Prashanth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, P., Liu, CF., Ummethala, R. et al. Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Prog Addit Manuf 6, 455–469 (2021). https://doi.org/10.1007/s40964-021-00210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00210-5

Keywords

Navigation