Skip to main content
Log in

An Analytical Approach for the Correlation Between Bifilm Index and Tensile Properties of AlSi7Mg0.3 (A356) Aluminum Alloy Cleaned via Rotary Degassing and Different Fluxes

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Mechanical properties of the castings are directly affected negatively by the inclusions, such as its own oxide occurring during melting, if proper and logical liquid metal processes could not be carried out. To overcome this issue, different compositions and types of fluxes were practiced. Na2SiF6, NaF/AlF3 (cryolite ratio) = 1.85, 2.8, and 3, NaF, Na3AlF6 (commercial cryolite) added with different ratios to the mixture of NaCl+KCl, and also only Na2SiF6 to the mixture of MgCl2+KCl were appended to the liquid metal to remove inclusions, such as old oxide bifilms. Average effectiveness values of the fluxes concerning mechanical properties were investigated as well. The change in the melt cleanliness before and after degassing has been taken into account to establish a model that correlates bifilm index and tensile properties. Since bifilm index is directly interested in porosity shape and amount to quantify liquid metal quality, any other techniques, such as density index, were not be consulted. In addition, the main focus was based on how much the melt was cleaned rather than the cleanliness of the melt after degassing. Thus, the difference of bifilm index as a melt cleanliness indicator firstly was introduced to the literature. In addition to this, the contour plots of mechanical properties and bifilm index values were used to evaluate the correlation, and it was found that there was an exponential relationship, a quality index, between elongation at fracture, tensile strength, and bifilm index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. R. Suresh, N.G. Siddeshkumar, Revista de Metalurgia 58(1), e213 (2022)

    Article  Google Scholar 

  2. J.D. Villegas-Cárdenas, V.M. López-Hirata, M. Saucedo-Muñoz, E.G. García, R.M. Luna-Sánchez, M.M. Rodriguez, Revista de Metalurgia 57(3), e204–e204 (2021)

    Article  Google Scholar 

  3. J.D. Villegas-Cárdenas, V. López-Hirata, M. Saucedo-Muñoz, A.C. Villegas, M.M. Rodríguez, Revista de Metalurgia 54(3), e126–e126 (2018)

    Article  Google Scholar 

  4. D. Dispinar, J. Campbell, Int. J. Cast Met. Res. 17(5), 280–286 (2004). https://doi.org/10.1179/136404604225020696

    Article  CAS  Google Scholar 

  5. D. Dispinar, S. Akhtar, A. Nordmark, M. Di Sabatino, L. Arnberg, Mater. Sci. Eng., A 527(16–17), 3719–3725 (2010). https://doi.org/10.1016/j.msea.2010.01.088

    Article  CAS  Google Scholar 

  6. D. Dispinar, J. Campbell, Mater. Sci. Eng., A 528(10–11), 3860–3865 (2011). https://doi.org/10.1016/j.msea.2011.01.084

    Article  CAS  Google Scholar 

  7. D. Dispinar, J. Campbell, Int. J. Cast Met. Res. 19(1), 5–17 (2006). https://doi.org/10.1179/136404606225023300

    Article  CAS  Google Scholar 

  8. S. Akhtar, D. Dispinar, L. Arnberg, M. Di Sabatino, Int. J. Cast Met. Res. 22(1–4), 22–25 (2009). https://doi.org/10.1179/136404609X367245

    Article  CAS  Google Scholar 

  9. D. Dispinar, C. Kahruman, J. Campbell, in Shape Casting: 5th International Symposium 2014, (Springer, Cham, 2014), pp. 171-176. https://doi.org/10.1007/978-3-319-48130-2_21.

  10. D. Dispinar, S. Akhtar, A. Nordmark, F. Syvertsen, M. Di Sabatino, L. Arnberg, in Supplemental Proceedings: Materials Properties, Characterization, and Modeling, 2012, pp. 201-208. https://doi.org/10.1002/9781118357002.ch27.

  11. Ç. Yüksel, Ö. Tamer, E. Erzi, U. Aybarc, E. Cubuklusu, O. Topcuoglu, M. Cigdem, D. Dispinar, Arch. Foundry Eng. 16(3), 151–156 (2016). https://doi.org/10.1515/afe-2016-0069

    Article  Google Scholar 

  12. J. Campbell, Complete casting handbook: metal casting processes, techniques, and design, 2nd edn. (Butterworth-Heinemann, Oxford, 2015)

    Google Scholar 

  13. F.Y. Hsu, M.R. Jolly, J. Campbell, J. Mater. Process. Technol. 209(17), 5736–5750 (2009). https://doi.org/10.1016/j.jmatprotec.2009.06.003

    Article  CAS  Google Scholar 

  14. T. Ludwig, M. Di Sabatino, L. Arnberg, D. Dispinar, Int. J. Metalcast 6, 41–50 (2012). https://doi.org/10.1007/BF03355526

    Article  CAS  Google Scholar 

  15. J. Campbell, Metall. and Mater. Trans. B. 37(6), 857–863 (2006). https://doi.org/10.1007/BF02735006

    Article  Google Scholar 

  16. J. Campbell, Mater. Des. 21(4), 373–380 (2000). https://doi.org/10.1016/S0261-3069(99)00072-2

    Article  Google Scholar 

  17. J. Campbell, Metall. and Mater. Trans. B. 42(6), 1091–1097 (2011). https://doi.org/10.1007/s11663-011-9575-5

    Article  CAS  Google Scholar 

  18. J. Campbell, Metall. and Mater. Trans. A. 46(11), 4848–4853 (2015). https://doi.org/10.1007/s11661-015-2955-8

    Article  CAS  Google Scholar 

  19. D. Dispinar, Determination of metal quality of aluminium and its alloys, Ph.D. dissertation, University of Birmingham, England, 2006.

  20. Ç. Yüksel, Improving the liquid metal quality of aluminum and its alloys, Ph.D. dissertation, Yildiz Technical University, Turkiye, 2016.

  21. G.E. Bozchaloei, N. Varahram, P. Davami, S.K. Kim, Mater. Sci. Eng.: A 548, 99–105 (2012). https://doi.org/10.1016/j.msea.2012.03.097

    Article  CAS  Google Scholar 

  22. P. Davami, S.K. Kim, N. Varahram, Y.O. Yoon, G.Y. Yeom, Mater. Sci. Eng.: A 558, 134–143 (2012). https://doi.org/10.1016/j.msea.2012.07.101

    Article  CAS  Google Scholar 

  23. N.D. Alexopoulos, M. Tiryakioğlu, Mater. Sci. Eng., A 507(1–2), 236–240 (2009). https://doi.org/10.1016/j.msea.2008.12.026

    Article  CAS  Google Scholar 

  24. G.B. Eisaabadi, P. Davami, S.K. Kim, M. Tiryakioğlu, Mater. Sci. Eng.: A 579, 64–70 (2013). https://doi.org/10.1016/j.msea.2013.05.014

    Article  CAS  Google Scholar 

  25. M. Tiryakioğlu, J. Campbell, Int. J. Metalcast. 8(3), 39–42 (2014). https://doi.org/10.1007/BF03355589

    Article  Google Scholar 

  26. M. Tiryakioğlu, J. Campbell, N.D. Alexopoulos, Metall. and Mater. Trans. B. 40(6), 802–811 (2009). https://doi.org/10.1007/s11663-009-9304-5

    Article  CAS  Google Scholar 

  27. G. Sigworth, Int. J. Metalcast. 5(1), 7–22 (2011). https://doi.org/10.1007/BF03355504

    Article  CAS  Google Scholar 

  28. M.B. Hocking, Handbook of chemical technology and pollution control (Elsevier, Amsterdam, 2016)

    Google Scholar 

  29. G.E. Totten, D.S. Mackenzie, Handbook of Aluminium: Alloy Production and Materials Manufacturing, vol. 2 (CRC Press, Boca Raton, Florida, 2003)

    Book  Google Scholar 

  30. F. Habashi, Handbook of extractive metallurgy, Light Metals, vol. 3 (Wiley-Vch, New Jersey, 1997)

    Google Scholar 

  31. R.S. Sherwin, JOM 2(4), 661–667 (1950). https://doi.org/10.1007/BF03399047

    Article  Google Scholar 

  32. C.H. Caceres, B.I. Selling, Mater. Sci. Eng., A 220(1–2), 109–116 (1996). https://doi.org/10.1016/S0921-5093(96)10433-0

    Article  Google Scholar 

  33. M. Riestra, A. Bjurenstedt, T. Bogdanoff, E. Ghassemali, S. Seifeddine, Int. J. Metalcast. 12, 441–448 (2018). https://doi.org/10.1007/s40962-017-0179-y

    Article  Google Scholar 

  34. J.E. Gruzleski, B.M. Closset, The treatment of liquid aluminum-silicon alloys (American Foundrymen Society, Schaumburg, Illinois, 1990)

    Google Scholar 

  35. O. Tkacheva, P. Arkhipov, A. Kataev, A. Rudenko, Y. Zaykov, Electrochem. Commun. 122, 106893 (2021). https://doi.org/10.1016/j.elecom.2020.106893

    Article  CAS  Google Scholar 

  36. A. Yorulmaz, E. Erzi, Ö. Gürsoy, D. Dispinar, Int. J. Cast Met. Res. 32(3), 164–170 (2019). https://doi.org/10.1080/13640461.2019.1598684

    Article  CAS  Google Scholar 

  37. T. Yamamoto, K. Kato, S.V. Komarov, Y. Ueno, M. Hayashi, Y. Ishiwata, J. Mater. Proc. Technol. 259, 409–415 (2018). https://doi.org/10.1016/j.jmatprotec.2018.04.025

    Article  CAS  Google Scholar 

  38. H. Song, L. Zhang, F. Cao, H. Shen, Z. Ning, Y. Huang, J. Sun, Scripta Materialia 191, 179–184 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.040

    Article  CAS  Google Scholar 

  39. H. Puga, J. Barbosa, T. Azevedo, S. Ribeiro, J.L. Alves, Mater. Design 94, 384–391 (2016). https://doi.org/10.1016/j.matdes.2016.01.059

    Article  CAS  Google Scholar 

  40. D.K. Sharma, D. Mahant, G. Upadhyay, Mater. Today: Proc. 26, 506–519 (2020). https://doi.org/10.1016/j.matpr.2019.12.128

    Article  CAS  Google Scholar 

  41. S. Arunkumar, M.S. Sundaram, S. Vigneshwara, Mater. Today: Proc. 33, 484–490 (2020). https://doi.org/10.1016/j.matpr.2020.05.053

    Article  CAS  Google Scholar 

  42. G. Gyarmati, G. Fegyverneki, M. Tokár, T. Mende, Int. J. Metalcast. 15, 141–151 (2021). https://doi.org/10.1007/s40962-020-00428-z

    Article  CAS  Google Scholar 

  43. T.A. Utigard, JOM 50(11), 38–43 (1998). https://doi.org/10.1007/s11837-998-0285-7

    Article  CAS  Google Scholar 

  44. M. Máté, M. Tokár, G. Fegyverneki, G. Gyarmati, Arch. Foundry Eng. 2, 53–58 (2020)

    Google Scholar 

  45. T.A. Utigard, R.R. Roy, K. Friesen, Can. Metall. Q. 40(3), 327–334 (2001). https://doi.org/10.1179/cmq.2001.40.3.327

    Article  CAS  Google Scholar 

  46. G. Gyarmati, M. Tokár, G. Fegyverneki, Mater. Sci. Eng. 43(1), 54–61 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Özge Tamer from Gazi University (formerly Yıldız Technical University), Ömer Demir, Hüseyincan Eker, Cemal Öztürk and Yusuf Basri Balcı from Yıldız Technical University, Özgür Topçuoğlu (formerly CMS Wheel), Uğur Aybarç, and Halil Emre Çubuklusu from CMS Wheel, and TÜBİTAK.

Funding

This work from my Ph.D thesis was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) [grant number 114M100] and Coordinators of Scientific Research Projects (BAPK) of Yıldız Technical University [Grant Number DOP - 2014-07-02-DOP03].

Author information

Authors and Affiliations

Authors

Contributions

D.D. and M.Ç. designed and directed the dissertation and the project; Ç.Y., D.D., and M.Ç. performed the experiments; Ç.Y., D.D., and M.Ç. contributed to the analysis of the results, and the writing of the manuscript.

Corresponding author

Correspondence to Çağlar Yüksel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüksel, Ç., Dışpınar, D. & Çiğdem, M. An Analytical Approach for the Correlation Between Bifilm Index and Tensile Properties of AlSi7Mg0.3 (A356) Aluminum Alloy Cleaned via Rotary Degassing and Different Fluxes. Inter Metalcast 17, 1615–1627 (2023). https://doi.org/10.1007/s40962-022-00882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00882-x

Keywords

Navigation