Skip to main content
Log in

A Numerical and Experimental Investigation of the Thermal Behavior of a Permanent Metal Mold with a Conventional Cooling Channel and a New Cooling Channel Design

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study compares the thermal performances of a permanent metal mold with a conventional [pass-through cooling channel design and one with a new additively manufactured cooling channel design by investigating them both numerically and experimentally. While the conventional cooling channel metal mold was manufactured by the traditional pass-through drilled channel method, the new cooling channel metal mold was made via additive manufacturing. After the molten metal (Al6061 aluminum alloy) was poured into the mold, the temperature distribution and solidification rates of the product (valve) obtained from the metal molds were analyzed comparatively with the data taken from the inner surface of the mold in 0.5 s time steps. On the basis of temperature values on the molten side of the metal molds, it was calculated that the heat transfer rate away from the molten metal achieved by the new cooling channel design was approximately 48% higher than the conventional cooling channel. In addition, it was observed that the conventional cooling channel needed 21% more time to transfer heat away compared to the new cooling channel design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

\({\dot{m}}\) :

Mass flow rate (kg/s)

c p :

Specific heat capacity (J/kg∙K)

\({\dot{Q}}\) :

Heat transferred (W)

α :

Thermal diffusivity (m2/s)

ρ :

Density (kg/m3)

k :

Thermal conductivity (W/m K)

T :

Temperature (K)

References

  1. P. Amend, C. Pscherer, T. Rechtenwald, T. Frick, M. Schmidt, A fast and flexible method for manufacturing 3D molded interconnect devices by the use of a rapid prototyping technology. Phys. Procedia 5, 561–572 (2010)

    Article  CAS  Google Scholar 

  2. S. Thomas, The Development of Design Rules for Selective Laser Melting (Cardiff Metropolitan University, 2009), https://repository.cardiffmet.ac.uk/dspace/handle/10369/913. Available 12 Aug 2015

  3. A. Eleonora, A. Salmi, Study on unsupported overhangs of AlSi10Mg parts processed by direct metal laser sintering. J. Manuf. Process. (2015). https://doi.org/10.1016/j.jmapro.2015.04.004

    Article  Google Scholar 

  4. P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng. 100, 1405–1413 (2015)

    Article  Google Scholar 

  5. M. Ayabe, T. Nagaoka, K. Shibata et al., Effect of high thermal conductivity die steel in aluminum casting. Int. Metalcast. 2, 47–55 (2008). https://doi.org/10.1007/BF03355427

    Article  CAS  Google Scholar 

  6. W. Kasprzak, M. Sahoo, J. Sokolowski, H. Yamagata, H. Kurita, The effect of the melt temperature and the cooling rate on the microstructure of the Al-20% Si alloy used for monolithic engine blocks. Int. J. Metalcast. 3(3), 55–71 (2009). https://doi.org/10.1007/BF03355453

    Article  CAS  Google Scholar 

  7. S. Müller, A. Müller, F. Rothe et al., An initial study of a lightweight die casting die using a modular design approach. Int. Metalcast. 12, 870–883 (2018). https://doi.org/10.1007/s40962-018-0218-3

    Article  Google Scholar 

  8. D. Neff, B.L. Ferguson, D. Londrico et al., Analysis of permanent mold distortion in aluminum casting. Int. Metalcast. 14, 3–11 (2020). https://doi.org/10.1007/s40962-019-00337-w

    Article  CAS  Google Scholar 

  9. N. Ahammed, L.G. Asirvatham, S. Wongwises, Thermoelectric cooling of electronic devices with nano fluid in a multiport mini channel heat exchanger. Exp. Therm. Fluid Sci. 74, 81–90 (2016)

    Article  CAS  Google Scholar 

  10. M. Al-Asadi, F.S. Alkasmoul, M.C.T. Wilson, Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators. Int. Com-mun. Heat Mass Transf. 74, 40–47 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.03.002

    Article  Google Scholar 

  11. K.M. Au, K.M. Yu, W.K. Chiu, Visibility based conformal cooling channel generation for rapid tooling. Comput. Aided Des. 43, 356–373 (2011)

    Article  Google Scholar 

  12. K. Prabhu, K. Sharath, G. Ramesh, Heat flux transients and casting surface macro-profile during downward solidification of Al-12% Si alloy against chills. Int. Metalcast. 5, 63–70 (2011). https://doi.org/10.1007/BF03355523

    Article  CAS  Google Scholar 

  13. D. Singh, V. Navaneeth, J. Lee, Developing a localized squeeze cooling technique for improved casting solidification. Int. Metalcast. 5, 65–79 (2011). https://doi.org/10.1007/BF03355472

    Article  CAS  Google Scholar 

  14. D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting. Int. J. Metalcast. 10(1), 32–42 (2015). https://doi.org/10.1007/s40962-015-0008-0

    Article  Google Scholar 

  15. Y. Tian, D. Yang, M. Jiang et al., Accurate simulation of complex temperature field in counter-pressure casting process using A356 aluminum alloy. Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00456-9

    Article  Google Scholar 

  16. Y. Wang, K.M. Yu, C.C.L. Wang, Spiral and conformal cooling in plastic injection molding. Comput. Aided Des. 63, 1–11 (2015). https://doi.org/10.1016/j.cad.2014.11.012

    Article  CAS  Google Scholar 

  17. C. Xia, F. Fu, J. Lai, X. Yao, Z. Chen, Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl. Therm. Eng. 90, 1032–1042 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.024

    Article  Google Scholar 

  18. P. Hu, B. He, L. Ying, Numerical investigation on cooling performance of hot stamping tool with various channel designs. Appl. Therm. Eng. 96, 338–351 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.154

    Article  Google Scholar 

  19. K. Eimsa-ard, K. Wannisorn, Conformal bubbler cooling for molds by metal deposition process. Comput. Aided Des. 69, 126–133 (2015). https://doi.org/10.1016/j.cad.2015.04.004

    Article  Google Scholar 

  20. F. Du, X. Wang, Y. Liu, T. Li, M. Yao, Analysis of non-uniform mechanical behavior for a continuous casting mold based on heat flux from inverse problem. J. Iron Steel Res. 23(2), 83–91 (2016)

    Article  Google Scholar 

  21. T. Vossel, N. Wolff, B. Pustal et al., Influence of die temperature control on solidification and the casting process. Int. Metalcast. 14, 907–925 (2020). https://doi.org/10.1007/s40962-019-00391-4

    Article  CAS  Google Scholar 

  22. E. Sachs, E. Wylonis, S. Allen, M. Cima, H. Guo, Production of injection molding tooling with confor-mal cooling channels using the three dimensional printing process. Polim. Eng. Sci. 40(5), 1232–1247 (2000). https://doi.org/10.1002/pen.11251

    Google Scholar 

  23. A.S. Haselhuhn, P.G. Sanders, J.M. Pearce, Hypoeutectic aluminum-silicon alloy development for GMAW-based 3-D printing using wedge castings. Int. Metalcast. 11, 843–856 (2017). https://doi.org/10.1007/s40962-017-0133-z

    Article  Google Scholar 

  24. M.M. Shehata, S. El-Hadad, M.E. Moussa et al., Optimizing the pouring temperature for semisolid casting of a hypereutectic Al–Si alloy using the cooling slope plate method. Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00465-8

    Article  Google Scholar 

  25. Z.H. Wang, J. Wang, L.B. Yu et al., Numerical simulation and process optimization of vacuum investment casting for Be–Al alloys. Int. Metalcast. 13, 74–81 (2019). https://doi.org/10.1007/s40962-018-0228-1

    Article  CAS  Google Scholar 

  26. A. Hamasaiid, M.S. Dargusch, G. Dour, The impact of the casting thickness on the interfacial heat transfer and solidification of the casting during permanent mold casting of an A356 alloy. J. Manuf. Process. 47, 229–237 (2019)

    Article  Google Scholar 

  27. W. Fang, X. He, R. Zhang, S. Yang, X. Qu, Evolution of stresses in metal injection molding parts during sintering. Trans. Nonferr. Met. Soc. China 25, 552–558 (2015)

    Article  CAS  Google Scholar 

  28. R. Hölker, M. Haase, N.B. Khalifa, A.E. Takkaya, Hot extrusion dies with conformal cooling channels produced by additive manufacturing, In Aluminum Two Thousand World Congress and International Conference on Extrusion and Benchmark ICEB 2015 (2015), pp. 4838–4846. https://doi.org/10.1016/j.matpr.2015.10.028

  29. F.Y. Hsu, P.S. Chen, H.J. Lin et al., Boiling phenomena of cooling water in the permanent mold. Int. Metalcast. 9, 31–40 (2015). https://doi.org/10.1007/BF03355613

    Article  Google Scholar 

  30. J.I. Cho, C.W. Kim, The Relationship between dendrite arm spacing and cooling rate of Al–Si casting alloys in high pressure die casting. Int. Metalcast. 8, 49–55 (2014). https://doi.org/10.1007/BF03355571

    Article  Google Scholar 

  31. A. Long, D. Thornhill, C. Armstrong et al., Stress correlation between instrumentation and simulation analysis of the die for high pressure die casting. Int. Metalcast. 7, 27–41 (2013). https://doi.org/10.1007/BF03355551

    Article  Google Scholar 

  32. H. Yavuz, O. Ertugrul, Numerical analysis of the cooling system performance and effectiveness in aluminum low-pressure die casting. Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00446-x

    Article  Google Scholar 

  33. FLUENT Manual, Chapter 21: Modeling Solidification and Melting (ANSYS Inc, Canonsburg, 2001).

    Google Scholar 

  34. J.J. Valencia, P.N. Quested, Thermophysical properties, in ASM Handbook, vol. 15 (Casting ASM Handbook Committee, 2013), pp. 468–481. https://doi.org/10.1361/asmhba0005240

  35. N. Akar, K. Boran, B. Hozikliğil, Kalıp Sıcaklığının Döküm Parça-Kalıp Arayüzey Isı Transfer Katsayısı Üzerine Etkisi. J. Fac. Eng. Arch. Gazi Univ. Cilt 28(2), 275–282 (2013)

    Google Scholar 

  36. S. Arankumar, K.V. Sreenivas Rao, T.S. Prasanna Kumar, Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. Int. J. Heat Mass Transf. 51(11), 2676–2685 (2008)

    Article  Google Scholar 

  37. T.V. Christy, N. Murugan, S. Kumar, A Comparative study on the microstructures and mechanical properties of Al 6061 alloy and the MMC Al 6061/TiB2/12P. J. Miner. Mater. Charact. Eng. 9(1), 57–65 (2010)

    Google Scholar 

  38. R. Looser, M. Vivar, V. Everett, Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications. Appl. Energy 113, 1496–1511 (2014)

    Article  CAS  Google Scholar 

  39. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J.A. Negi, A.K. Nath, Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 39(4), 800–805 (2007)

    Article  Google Scholar 

  40. H. Sert, A. Can, H. Arıkan, B. Selcuk, H. Toprak, Wear behavior of different surface treated cam spindles. Wear 260(9–10), 1013–1019 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, M., Ipek, O. A Numerical and Experimental Investigation of the Thermal Behavior of a Permanent Metal Mold with a Conventional Cooling Channel and a New Cooling Channel Design. Inter Metalcast 16, 699–712 (2022). https://doi.org/10.1007/s40962-021-00633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00633-4

Keywords

Navigation