Skip to main content
Log in

Geometric properties of curves defined over number fields

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

The article contains a detailed proof of the famous Belyi theorem on geometry of complex algebraic curves defined over number fields. It also includes the discussion of several constructions and conjectures inspired by Belyi’s result which where brought up by the first author during his colloquium talks at different universities within the period from 1979 to 1984.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J.W.: Note on Riemann spaces. Bull. Amer. Math. Soc. 26(8), 370–372 (1920)

    Article  MathSciNet  Google Scholar 

  2. Belyi, G.V.: On Galois extensions of a maximal cyclotomic field. Math. USSR-Izv. 14(2), 247–256 (1980)

    Article  Google Scholar 

  3. Bogomolov, F., Fu, H., Tschinkel, Yu.: Torsion of elliptic curves and unlikely intersections. In: Dancer, A., et al. (eds.) Geometry and Physics, vol. 1, pp. 19–37. Oxford University Press, Oxford (2018)

    MATH  Google Scholar 

  4. Bogomolov, F.A., Pantev, T.G.: Weak Hironaka theorem. Math. Res. Lett. 3(3), 299–307 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bogomolov, F., Qian, J.: On contraction of algebraic points. Bull. Korean Math. Soc. 54(5), 1577–1596 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bogomolov, F., Tschinkel, Yu.: Couniformization of curves over number fields. In: Bogomolov, F., Tschinkel, Yu. (eds.) Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol. 235, pp. 43–57. Birkhäuser, Boston (2005)

  7. Buonerba, F., Bogomolov, F.A.: Dominant classes of projective varieties. Eur. J. Math. 4(4), 1412–1420 (2018)

    Article  MathSciNet  Google Scholar 

  8. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Ihara, Y. et al. (eds.) Galois Groups over \({\bf Q}\). Mathematical Sciences Research Institute Publications, vol. 16, pp. 79–297. Springer (1989)

  9. Drinfeld, V.G.: On quasitriangular quasi-hopf algebras and a groupclosely connected with Gal\((\overline{\mathbb{Q}}/{\mathbb{Q}})\). Leningrad Math J. 2(4), 829–860 (1991)

    MathSciNet  Google Scholar 

  10. Elkies, N.D.: ABC implies Mordell. Int. Math. Res. Not. 1991(7), 99–109 (1991)

    Article  MathSciNet  Google Scholar 

  11. Grothendieck, A.: Esquisse d’un programme. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions. London Mathematical Society Lecture Note Series, vol. 242, pp. 5–48. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Ihara, Y.: Arithmetic analogues of braid groups and galois representations. In: Birman, J.S., Libgober, A. (eds.) Braids. Contemporary Mathematics, vol. 78, pp. 245–257. American Mathematical Society, Providence (1988)

    Google Scholar 

  13. Mumford, D.: The Red Book of Varieties and Schemes. 2nd expanded edn. Includes the Michigan Lectures (1974) on Curves and Their Jacobians. Lecture Notes in Mathematics, vol. 1358. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Schneps, L. (ed.): The Grothendieck Theory of Dessins d’Enfants. London Mathematical Society Lecture Note Series, vol. 200. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  15. Schneps, L., Lochak, P. (eds.): Geometric Galois Actions. Volume 2. London Mathematical Society Lecture Note Series, vol. 243. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Shabat, G.B.: On the classification of plane trees by their galois orbit. In: Schneps, L. (ed.) The Grothendieck Theory of Dessins d’Enfants. London Mathematical Society Lecture Note Series, vol. 200, pp. 169–177. Cambridge University Press, Cambridge (1994)

    Chapter  Google Scholar 

  17. Shabat, G.B., Voevodsky, V.A.: Drawing curves over number fields. In: Cartier, P., et al. (eds.) The Grothendieck Festschrift. Progress in Mathematics, vol. 88, pp. 199–227. Birkhäuser, Boston (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author wants to thank Arman Sarikyan for his help in editing and preparation of the initial Max Planck Institute preprint for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor A. Bogomolov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is partially supported by the HSE University Basic Research Program, Russian Academic Excellence Project ‘5-100’ and by EPSRC programme Grant EP/M024830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomolov, F.A., Husemöller, D. Geometric properties of curves defined over number fields. European Journal of Mathematics 8, 792–805 (2022). https://doi.org/10.1007/s40879-021-00497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-021-00497-2

Keywords

Mathematics Subject Classification

Navigation